找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Eddy Current Approximation of Maxwell Equations; Theory, Algorithms a Ana Alonso Rodríguez,Alberto Valli Book 2010 Springer-Verlag Milan 20

[复制链接]
楼主: cobble
发表于 2025-3-25 05:41:08 | 显示全部楼层
Existence and uniqueness of the solution,ríguez et al. [11], we mainly focus on the magnetic boundary value problem (1.22), adding in Section 3.5 a few comments on the electric boundary value problem(1.20) and the no-flux boundary value problem (1.24).
发表于 2025-3-25 08:39:46 | 显示全部楼层
Hybrid formulations for the electric and magnetic fields,ar potential, the latter being used only in the conducting region, or on the use of a magnetic scalar potential in the insulating region (see, e.g., Jackson [137], Silvester and Ferrari [227]). We present these formulations in Chapters 6 and 5 respectively.
发表于 2025-3-25 12:44:39 | 显示全部楼层
发表于 2025-3-25 18:49:36 | 显示全部楼层
https://doi.org/10.1007/978-3-642-92887-1In this chapter, starting from the classical Maxwell equations, we describe and motivate the problem we are going to consider.
发表于 2025-3-25 20:00:53 | 显示全部楼层
Verdampfen, Destillieren und Sublimieren,As we have already remarked in the preceding chapters, a specific feature of eddy current problems is the presence of differential constraints acting in the non-conducting part of the domain: namely, curl .=. in Ω. and div (ε.)=0 in Ω
发表于 2025-3-26 00:11:39 | 显示全部楼层
Setting the problem,In this chapter, starting from the classical Maxwell equations, we describe and motivate the problem we are going to consider.
发表于 2025-3-26 04:40:43 | 显示全部楼层
Formulations via scalar potentials,As we have already remarked in the preceding chapters, a specific feature of eddy current problems is the presence of differential constraints acting in the non-conducting part of the domain: namely, curl .=. in Ω. and div (ε.)=0 in Ω
发表于 2025-3-26 11:39:34 | 显示全部楼层
发表于 2025-3-26 14:03:23 | 显示全部楼层
发表于 2025-3-26 17:10:30 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-8 01:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表