找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: ECML PKDD 2020 Workshops; Workshops of the Eur Irena Koprinska,Michael Kamp,Jon Atle Gulla Conference proceedings 2020 Springer Nature Swit

[复制链接]
查看: 46378|回复: 56
发表于 2025-3-21 16:09:29 | 显示全部楼层 |阅读模式
书目名称ECML PKDD 2020 Workshops
副标题Workshops of the Eur
编辑Irena Koprinska,Michael Kamp,Jon Atle Gulla
视频video
丛书名称Communications in Computer and Information Science
图书封面Titlebook: ECML PKDD 2020 Workshops; Workshops of the Eur Irena Koprinska,Michael Kamp,Jon Atle Gulla Conference proceedings 2020 Springer Nature Swit
描述This volume constitutes the refereed proceedings of the workshops which complemented the 20th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in September 2020. Due to the COVID-19 pandemic the conference and workshops were held online. .The 43 papers presented in volume were carefully reviewed and selected from numerous submissions. The volume presents the papers that have been accepted for the following workshops: 5th Workshop on Data Science for Social Good, SoGood 2020; Workshop on Parallel, Distributed and Federated Learning, PDFL 2020; Second Workshop on Machine Learning for Cybersecurity, MLCS 2020, 9th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2020, Workshop on Data Integration and Applications, DINA 2020, Second Workshop on Evaluation and Experimental Design in Data Mining and Machine Learning, EDML 2020, Second  International Workshop  on  eXplainable  Knowledge  Discovery in  Data Mining, XKDD 2020; 8th International Workshop on News Recommendation and Analytics, INRA 2020. .The papers from INRA 2020 are published open access and licensed under the terms of the Creative Commons Attributio
出版日期Conference proceedings 2020
关键词artificial intelligence; computer hardware; computer networks; computer security; computer systems; corre
版次1
doihttps://doi.org/10.1007/978-3-030-65965-3
isbn_softcover978-3-030-65964-6
isbn_ebook978-3-030-65965-3Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称ECML PKDD 2020 Workshops影响因子(影响力)




书目名称ECML PKDD 2020 Workshops影响因子(影响力)学科排名




书目名称ECML PKDD 2020 Workshops网络公开度




书目名称ECML PKDD 2020 Workshops网络公开度学科排名




书目名称ECML PKDD 2020 Workshops被引频次




书目名称ECML PKDD 2020 Workshops被引频次学科排名




书目名称ECML PKDD 2020 Workshops年度引用




书目名称ECML PKDD 2020 Workshops年度引用学科排名




书目名称ECML PKDD 2020 Workshops读者反馈




书目名称ECML PKDD 2020 Workshops读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:41:59 | 显示全部楼层
发表于 2025-3-22 04:05:13 | 显示全部楼层
Richard Beals,Roderick S. C. Wongrency and trust can be ensured in the underlying distributions and relationships of the resulting synthetic datasets. What is more, these datasets offer a strong level of privacy through lower risks of identifying real patients.
发表于 2025-3-22 05:03:32 | 显示全部楼层
Emergent Imputative Symbols: In One Worde staging information). In this paper, we explore the combination of pseudo time and topological data analysis to build realistic trajectories over disease topologies. Using three different datasets: simulated, diabetes and genomic data, we explore how the combined method can highlight distinct temp
发表于 2025-3-22 09:29:01 | 显示全部楼层
发表于 2025-3-22 16:03:37 | 显示全部楼层
https://doi.org/10.1007/978-981-15-1963-5r processors typically only have integer processing capabilities. This paper investigates an approach to communication-efficient on-device learning of integer exponential families that can be executed on low-power processors, is privacy-preserving, and effectively minimizes communication. The empiri
发表于 2025-3-22 18:15:25 | 显示全部楼层
https://doi.org/10.1007/978-981-10-6811-9us data batches. We then applied a classification method based on Text-CNN technique to classify packets as normal or attack inside each suspicious batch. Our model reconstruction results show that we are able to discriminate normal and attack models with high precision and our classification method
发表于 2025-3-22 21:29:28 | 显示全部楼层
y unsupervised, our method outperforms many existing approaches. To the best of our knowledge, the only approaches with comparable performance require manual filtering of connections and feature engineering steps. In contrast, our method is applied to raw network traffic. We apply our pipeline to th
发表于 2025-3-23 01:30:00 | 显示全部楼层
Alan Park FRICS, MCIOB, ACIArb., FAFMs using call graph, n-gram, and image transformations. Further, Auxiliary Classifier Generative Adversarial Network (AC-GAN) is used for generating unseen data for training purposes. The model is extended for federated setup to build an effective malware detection system. We have used the Microsoft
发表于 2025-3-23 09:23:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 09:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表