找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Document Analysis and Recognition - ICDAR 2024; 18th International C Elisa H. Barney Smith,Marcus Liwicki,Liangrui Peng Conference proceedi

[复制链接]
查看: 22973|回复: 58
发表于 2025-3-21 17:19:27 | 显示全部楼层 |阅读模式
书目名称Document Analysis and Recognition - ICDAR 2024
副标题18th International C
编辑Elisa H. Barney Smith,Marcus Liwicki,Liangrui Peng
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Document Analysis and Recognition - ICDAR 2024; 18th International C Elisa H. Barney Smith,Marcus Liwicki,Liangrui Peng Conference proceedi
描述.This six-volume set LNCS 14804-14809 constitutes the proceedings of the 18th International Conference on Document Analysis and Recognition, ICDAR 2024, held in Athens, Greece, during August 30–September 4, 2024..The total of 144 full papers presented in these proceedings were carefully selected from 263 submissions..The papers reflect topics such as: Document image processing; physical and logical layout analysis; text and symbol recognition; handwriting recognition; document analysis systems; document classification; indexing and retrieval of documents; document synthesis; extracting document semantics; NLP for document understanding; office automation; graphics recognition; human document interaction; document representation modeling and much more... .
出版日期Conference proceedings 2024
关键词Document Analysis Systems; Handwriting Recognition; Scene Text Detection and Recognition; Document Imag
版次1
doihttps://doi.org/10.1007/978-3-031-70533-5
isbn_softcover978-3-031-70532-8
isbn_ebook978-3-031-70533-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Document Analysis and Recognition - ICDAR 2024影响因子(影响力)




书目名称Document Analysis and Recognition - ICDAR 2024影响因子(影响力)学科排名




书目名称Document Analysis and Recognition - ICDAR 2024网络公开度




书目名称Document Analysis and Recognition - ICDAR 2024网络公开度学科排名




书目名称Document Analysis and Recognition - ICDAR 2024被引频次




书目名称Document Analysis and Recognition - ICDAR 2024被引频次学科排名




书目名称Document Analysis and Recognition - ICDAR 2024年度引用




书目名称Document Analysis and Recognition - ICDAR 2024年度引用学科排名




书目名称Document Analysis and Recognition - ICDAR 2024读者反馈




书目名称Document Analysis and Recognition - ICDAR 2024读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:43:00 | 显示全部楼层
发表于 2025-3-22 00:23:25 | 显示全部楼层
Document Specular Highlight Removal with Coarse-to-Fine Strategyetween the ground-truth and the CP-predicted image. Experimental results on four public benchmark images demonstrate that our method surpasses state-of-the-art methods in the task of highlight removal.
发表于 2025-3-22 06:31:30 | 显示全部楼层
KVP10k : A Comprehensive Dataset for Key-Value Pair Extraction in Business Documents0k , a new dataset and benchmark specifically designed for KVP extraction. The dataset contains 10707richly annotated images. In our benchmark, we also introduce a new challenging task that combines elements of KIE as well as KVP in a single task. KVP10k sets itself apart with its extensive diversit
发表于 2025-3-22 09:02:54 | 显示全部楼层
Context-Aware Confidence Estimation for Rejection in Handwritten Chinese Text Recognitionand binary geometric features. Experimental evaluations on the CASIA-HWDB and ICDAR2013 datasets demonstrate that our method can significantly improve the rejection performance in respect of low error rate at moderate rejection rate. The re-trained classifier, the linguistic context and the geometri
发表于 2025-3-22 13:46:06 | 显示全部楼层
Radical Similarity Based Model Optimization and Post-correction for Chinese Character Recognitionhe potential error recognition results, offering a low-cost yet effective solution. Experimental results on different radical-based CCR models and datasets demonstrate the effectiveness and robustness of our proposed method.
发表于 2025-3-22 19:00:50 | 显示全部楼层
Puzzle Pieces Picker: Deciphering Ancient Chinese Characters with Radical Reconstruction promising insights, underscoring the potential and effectiveness of our approach in deciphering the intricacies of ancient Chinese scripts. Through this novel dataset and methodology, we aim to bridge the gap between traditional philology and modern document analysis techniques, offering new insigh
发表于 2025-3-22 22:04:12 | 显示全部楼层
发表于 2025-3-23 05:04:50 | 显示全部楼层
GraphMLLM: A Graph-Based Multi-level Layout Language-Independent Model for Document Understandingmprove the performance of language-independent document pre-trained model. Experimental results show that compared with previous state-of-the-art methods, GraphMLLM yields higher performance on downstream visual information extraction (VIE) tasks after pre-training on less documents. Code and model
发表于 2025-3-23 07:40:20 | 显示全部楼层
EntityLayout: Entity-Level Pre-training Language Model for Semantic Entity Recognition and Relation ental results on public datasets FUNSD and CORD demonstrate that the proposed EntityLayout achieves competitive performance in SER and state-of-the-art performance in RE, i.e., SER F1 scores of 0.9108 and 0.9650, respectively, RE F1 scores of 0.8212 and 0.9898, respectively.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 06:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表