找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Reinforcement Learning with Python; RLHF for Chatbots an Nimish Sanghi Book 2024Latest edition Nimish Sanghi 2024 Artificial Intellige

[复制链接]
楼主: 帐簿
发表于 2025-3-28 15:38:46 | 显示全部楼层
Kundenfokussierung nach ethischen Standards,ent approaches. Specifically, the chapter combines the Model-based approaches and Model-free approaches to make the algorithms more powerful and sample efficient. This approach leverages the best of both of them and is the main emphasis of this chapter. You will also study the Exploration-exploitati
发表于 2025-3-28 22:26:55 | 显示全部楼层
er Large Language Model (LLM) and found it amazing how these models seem to follow your prompts and complete a task that you describe in English? Apart from the machinery of generative AI and transformers-driven architecture, RL also plays a very important role. Proximal Policy Optimization (PPO) us
发表于 2025-3-28 22:54:07 | 显示全部楼层
HF fine-tuning. You may have noticed that the focus has always been on only one agent in the environment that learns to act optimally using RL training algorithms. However, there is a whole range of settings with more than one agent. These agents in the environment—either individually or in a collab
发表于 2025-3-29 06:36:10 | 显示全部楼层
发表于 2025-3-29 07:23:12 | 显示全部楼层
发表于 2025-3-29 11:51:32 | 显示全部楼层
Nimish SanghiExplains deep reinforcement learning implementation using TensorFlow, PyTorch and OpenAI Gym.Comprehensive coverage on fine-tuning Large Language Models using RLHF with complete code examples.Every co
发表于 2025-3-29 17:22:17 | 显示全部楼层
发表于 2025-3-29 20:55:47 | 显示全部楼层
Book 2024Latest editions such as Hugging Face Hub. The code is in Jupyter Notebook, which canbe run on Google Colab, and other similar deep learning cloud platforms, allowing you to tailor the code to your own needs. .Whether it’s for applications in gaming, robotics, or Generative AI, .Deep Reinforcement Learning with Py
发表于 2025-3-30 01:25:36 | 显示全部楼层
发表于 2025-3-30 04:11:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-30 17:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表