找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Driven Data Mining; Longbing Cao,Philip S. Yu,Yanchang Zhao Book 2010 Springer-Verlag US 2010 data analysis.data mining.decision su

[复制链接]
楼主: 恐怖
发表于 2025-3-25 05:03:36 | 显示全部楼层
发表于 2025-3-25 09:47:58 | 显示全部楼层
发表于 2025-3-25 11:39:09 | 显示全部楼层
Reading Materials,This section lists some materials related to domain driven data mining, for the convenience of readers who are interested in studying this interesting, challenging and very practical area.
发表于 2025-3-25 19:23:44 | 显示全部楼层
https://doi.org/10.1007/978-3-319-23081-8ld data mining, distinguish data-centered data mining from domain driven data mining, and propose the trends from data-centered hidden pattern discovery to domain driven actionable knowledge delivery(AKD) as a new KDD paradigm shift.
发表于 2025-3-25 20:08:41 | 显示全部楼层
https://doi.org/10.1007/978-3-319-23081-8ld data mining, distinguish data-centered data mining from domain driven data mining, and propose the trends from data-centered hidden pattern discovery to domain driven actionable knowledge delivery(AKD) as a new KDD paradigm shift.
发表于 2025-3-26 02:30:26 | 显示全部楼层
Brian J. Linder M.D.,Daniel S. Elliott M.D.: How to read and understand discovered patterns, which are often in thousands or more? What are the most interesting ones? Is the model accurate and what does the model tell us? How to use the rules, patterns and models? To answer the above questions and present useful knowledge to users, it is nec
发表于 2025-3-26 06:11:49 | 显示全部楼层
发表于 2025-3-26 08:29:34 | 显示全部楼层
Brief Book Description and Book Assumptionses such as government arrangements for debtors’ payback agreed by both parties, and debtors’ repayment information. Such data encloses important information about the experience and performance of government service objectives and social security policies, and may include evidence and indicators for
发表于 2025-3-26 14:41:26 | 显示全部楼层
Challenges and Trends,ld data mining, distinguish data-centered data mining from domain driven data mining, and propose the trends from data-centered hidden pattern discovery to domain driven actionable knowledge delivery(AKD) as a new KDD paradigm shift.
发表于 2025-3-26 20:25:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 02:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表