找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Document Analysis and Recognition – ICDAR 2021; 16th International C Josep Lladós,Daniel Lopresti,Seiichi Uchida Conference proceedings 202

[复制链接]
楼主: 畸齿矫正学
发表于 2025-3-28 15:39:25 | 显示全部楼层
SynthTIGER: Synthetic Text Image GEneratoR Towards Better Text Recognition Models the combination of synthetic datasets, MJSynth (MJ) and SynthText (ST). Our ablation study demonstrates the benefits of using sub-components of SynthTIGER and the guideline on generating synthetic text images for STR models. Our implementation is publicly available at ..
发表于 2025-3-28 19:28:31 | 显示全部楼层
发表于 2025-3-28 23:17:02 | 显示全部楼层
发表于 2025-3-29 04:05:06 | 显示全部楼层
发表于 2025-3-29 07:18:14 | 显示全部楼层
发表于 2025-3-29 14:08:49 | 显示全部楼层
发表于 2025-3-29 19:27:55 | 显示全部楼层
Fast Text vs. Non-text Classification of Imagess, as encountered in social networks, for detection and recognition of scene text. The proposed classifier efficiently removes non-text images from consideration, thus allowing to apply the potentially computationally heavy scene text detection and OCR on only a fraction of the images..The proposed
发表于 2025-3-29 22:33:33 | 显示全部楼层
Mask Scene Text Recognizer a supervised learning task of predicting text image mask into a CNN (convolutional neural network)-Transformer framework for scene text recognition. The incorporated mask predicting branch is connected in parallel with the CNN backbone, and the predicted mask is used as attention weights for the fe
发表于 2025-3-30 03:29:46 | 显示全部楼层
发表于 2025-3-30 06:04:55 | 显示全部楼层
Heterogeneous Network Based Semi-supervised Learning for Scene Text Recognitionbased on abundant labeled data for model training. Obtaining text images is a relatively easy process, but labeling them is quite expensive. To alleviate the dependence on labeled data, semi-supervised learning which combines labeled and unlabeled data seems to be a reasonable solution, and is prove
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-23 11:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表