找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discovery Science; 13th International C Bernhard Pfahringer,Geoff Holmes,Achim Hoffmann Conference proceedings 2010 Springer Berlin Heidelb

[复制链接]
查看: 10081|回复: 63
发表于 2025-3-21 17:17:54 | 显示全部楼层 |阅读模式
书目名称Discovery Science
副标题13th International C
编辑Bernhard Pfahringer,Geoff Holmes,Achim Hoffmann
视频video
概述Up to date results.Fast conference proceedings.State-of-the-art report
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Discovery Science; 13th International C Bernhard Pfahringer,Geoff Holmes,Achim Hoffmann Conference proceedings 2010 Springer Berlin Heidelb
出版日期Conference proceedings 2010
关键词cloud computing; clustering; cognition; collaborative science; data mining; human-machine interaction; kno
版次1
doihttps://doi.org/10.1007/978-3-642-16184-1
isbn_softcover978-3-642-16183-4
isbn_ebook978-3-642-16184-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Berlin Heidelberg 2010
The information of publication is updating

书目名称Discovery Science影响因子(影响力)




书目名称Discovery Science影响因子(影响力)学科排名




书目名称Discovery Science网络公开度




书目名称Discovery Science网络公开度学科排名




书目名称Discovery Science被引频次




书目名称Discovery Science被引频次学科排名




书目名称Discovery Science年度引用




书目名称Discovery Science年度引用学科排名




书目名称Discovery Science读者反馈




书目名称Discovery Science读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:17:01 | 显示全部楼层
A Similarity-Based Adaptation of Naive Bayes for Label Ranking: Application to the Metalearning Proe been adapted for this task, including k-Nearest Neighbours (k-NN) and decision trees. Following this line, we propose an adaptation of the naive Bayes classification algorithm for the label ranking problem. Our main idea lies in the use of similarity between the rankings to replace the concept of
发表于 2025-3-22 02:39:35 | 显示全部楼层
Topology Preserving SOM with Transductive Confidence Machine,dimension reduction tool for mapping training samples from a high-dimensional input space onto a neuron grid. However, current SOM-based classifiers can not provide degrees of classification reliability for new unlabeled samples so that they are difficult to be used in risk-sensitive applications wh
发表于 2025-3-22 06:40:31 | 显示全部楼层
An Artificial Experimenter for Enzymatic Response Characterisation, comparison to the size of the parameter spaces being investigated. New tools are required to assist scientists in the effective characterisation of such behaviours. By combining artificial intelligence techniques for active experiment selection, with a microfluidic experimentation platform that red
发表于 2025-3-22 12:12:27 | 显示全部楼层
Subgroup Discovery for Election Analysis: A Case Study in Descriptive Data Mining, of election results. Our inquiry is based on the 2009 German federal Bundestag election (restricted to the City of Cologne) and additional socio-economic information about Cologne’s polling districts. The task is to describe relations between socio-economic variables and the votes in order to summa
发表于 2025-3-22 13:37:01 | 显示全部楼层
发表于 2025-3-22 17:54:58 | 显示全部楼层
发表于 2025-3-22 22:26:17 | 显示全部楼层
发表于 2025-3-23 05:24:04 | 显示全部楼层
Incremental Learning of Cellular Automata for Parallel Recognition of Formal Languages,rning of one-dimensional, bounded, one-way, cellular automata (OCAs) that recognize formal languages from positive and negative sample strings. The objectives of this work are to develop automatic synthesis of parallel systems and to contribute to the theory of real-time recognition by cellular auto
发表于 2025-3-23 08:01:54 | 显示全部楼层
Sparse Substring Pattern Set Discovery Using Linear Programming Boosting,t margin optimization problem where each dimension corresponds to a substring pattern. Then we solve this problem by using LPBoost and an optimal substring discovery algorithm. Since the problem is a linear program, the resulting solution is likely to be sparse, which is useful for feature selection
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 12:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表