找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Diophantine Equations and Power Integral Bases; Theory and Algorithm István Gaál Book 2019Latest edition Springer Nature Switzerland AG 201

[复制链接]
楼主: Magnanimous
发表于 2025-3-27 00:38:11 | 显示全部楼层
Geoffrey Edwards,Marie-Josée Fortinbles. The resolution of such an equation can yield a difficult problem. The main goal of this chapter is to point out that in the quartic case the index form equation can be reduced to a cubic and some corresponding quartic Thue equations (see Sect. .). This means that in fact the index form equatio
发表于 2025-3-27 04:03:01 | 显示全部楼层
Marie-Josée Fortin,Geoffrey Edwards quintic fields. In the most interesting case, for totally real quintic fields with Galois group .., .., or .., this computation takes several hours, contrary to the cubic and quartic cases, where to solve the index form equation was the matter of seconds or at most some minutes. The general method
发表于 2025-3-27 09:00:42 | 显示全部楼层
Probabilistic Projection in Planningds to calculate generators of power integral bases in case the sextic field admits some additional property, making the index form equation easier. We have efficient algorithms for sextic fields having quadratic or cubic subfields (see Sects. 11.2 and 11.3). Investigating the structure of the index
发表于 2025-3-27 10:47:17 | 显示全部楼层
发表于 2025-3-27 17:07:04 | 显示全部楼层
发表于 2025-3-27 20:49:14 | 显示全部楼层
Roberto Casati,Achille C. Varzi in the extension field by using the relative power integral bases..In Sect. . we describe a relative analogue of the method of Sect. . to calculate relative power integral bases in relative quartic extensions. Applying this method in Sect. . we consider power integral bases in octic fields with qua
发表于 2025-3-27 22:49:32 | 显示全部楼层
发表于 2025-3-28 03:22:17 | 显示全部楼层
https://doi.org/10.1007/978-3-030-23865-0Algebraic Number Theory; Algorithmic Analysis; number theory; Diophantine equation; Diophantine equation
发表于 2025-3-28 06:27:31 | 显示全部楼层
发表于 2025-3-28 12:09:48 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-20 07:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表