用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Third International M. Jorge Cardoso,Tal Ar

[复制链接]
楼主: T-Lymphocyte
发表于 2025-3-25 03:56:06 | 显示全部楼层
Accurate Lung Segmentation via Network-Wise Training of Convolutional Networks has an ability to reduce falsely predicted labels and produce smooth boundaries of lung fields. We evaluate the proposed model on a common benchmark dataset, JSRT, and achieve the state-of-the-art segmentation performances with much fewer model parameters.
发表于 2025-3-25 08:38:59 | 显示全部楼层
发表于 2025-3-25 14:33:04 | 显示全部楼层
Conference proceedings 2017d at DLMIA 2017 and the 5 full papers presented at ML-CDS 2017 were carefully reviewed and selected. The DLMIA papers focus on the design and use of deep learning methods in medical imaging. The ML-CDS papers discuss new techniques of multimodal mining/retrieval and their use in clinical decision support..
发表于 2025-3-25 18:49:14 | 显示全部楼层
发表于 2025-3-25 19:57:51 | 显示全部楼层
发表于 2025-3-26 02:45:06 | 显示全部楼层
发表于 2025-3-26 05:17:56 | 显示全部楼层
发表于 2025-3-26 08:45:29 | 显示全部楼层
JingMin Huang,Gianluca Stringhini,Peng Yong has an ability to reduce falsely predicted labels and produce smooth boundaries of lung fields. We evaluate the proposed model on a common benchmark dataset, JSRT, and achieve the state-of-the-art segmentation performances with much fewer model parameters.
发表于 2025-3-26 13:00:17 | 显示全部楼层
Alessandro Erba,Nils Ole Tippenhaueraining in a semi-supervised setting. Using two types of medical imaging data (liver CT and left ventricle MRI data), we show that the integrated method achieves good performance even when little training data is available, outperforming the FCN or the level set model alone.
发表于 2025-3-26 20:30:06 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-10 03:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表