找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning Models; A Practical Approach Jonah Gamba Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license t

[复制链接]
查看: 54799|回复: 35
发表于 2025-3-21 19:39:59 | 显示全部楼层 |阅读模式
书目名称Deep Learning Models
副标题A Practical Approach
编辑Jonah Gamba
视频video
概述Offers a special chapter devoted to performance evaluation of deep learning algorithms.Demonstrates illustrative colorful block diagrams, figures, and full code examples to clearly present ideas invol
丛书名称Transactions on Computer Systems and Networks
图书封面Titlebook: Deep Learning Models; A Practical Approach Jonah Gamba Book 2024 The Editor(s) (if applicable) and The Author(s), under exclusive license t
描述.This book focuses on and prioritizes a practical approach, minimizing theoretical concepts to deliver algorithms effectively. With deep learning emerging as a vibrant field of research and development in numerous industrial applications, there is a pressing need for accessible resources that provide comprehensive examples and quick guidance. Unfortunately, many existing books on the market tend to emphasize theoretical aspects, leaving newcomers scrambling for practical guidance. This book takes a different approach by focusing on practicality while keeping theoretical concepts to a necessary minimum. The book begins by laying a foundation of basic information on deep learning, gradually delving into the subject matter to explain and illustrate the limitations of existing algorithms. A dedicated chapter is allocated to evaluating the performance of multiple algorithms on specific datasets, highlighting techniques and strategies that can address real-world challenges when deep learning is employed. By consolidating all necessary information into a single resource, readers can bypass the hassle of scouring scattered online sources, gaining a one-stop solution to dive into deep learn
出版日期Book 2024
关键词Deep learning; Computer vision; Object detection; Object classification; Python programming; Remote sensi
版次1
doihttps://doi.org/10.1007/978-981-99-9672-8
isbn_softcover978-981-99-9674-2
isbn_ebook978-981-99-9672-8Series ISSN 2730-7484 Series E-ISSN 2730-7492
issn_series 2730-7484
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Deep Learning Models影响因子(影响力)




书目名称Deep Learning Models影响因子(影响力)学科排名




书目名称Deep Learning Models网络公开度




书目名称Deep Learning Models网络公开度学科排名




书目名称Deep Learning Models被引频次




书目名称Deep Learning Models被引频次学科排名




书目名称Deep Learning Models年度引用




书目名称Deep Learning Models年度引用学科排名




书目名称Deep Learning Models读者反馈




书目名称Deep Learning Models读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:17:28 | 显示全部楼层
Xiaocun Zhu,Pius Leuba dit Gallandsic principles related to data manipulation and ends with explanation on how to set up the modelling environment. Some high level programming concepts which are very easy to acquire within a short space of time are presented in order to give the reader a picture of what to expect in examples that wi
发表于 2025-3-22 04:08:41 | 显示全部楼层
发表于 2025-3-22 06:17:59 | 显示全部楼层
发表于 2025-3-22 10:42:46 | 显示全部楼层
Amaresh Chakrabarti,Vishal Singh neural networks. However, there is an increasing recognition that deep learning, which has been applied successfully in other areas such as computer vision and language processing, is a viable alternative to traditional machine learning. This chapter will work through a specific example of the appl
发表于 2025-3-22 15:24:17 | 显示全部楼层
发表于 2025-3-22 18:06:40 | 显示全部楼层
发表于 2025-3-22 21:33:56 | 显示全部楼层
发表于 2025-3-23 02:17:10 | 显示全部楼层
发表于 2025-3-23 06:11:15 | 显示全部楼层
Transactions on Computer Systems and Networkshttp://image.papertrans.cn/d/image/264576.jpg
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 15:23
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表