找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning Applications, Volume 3; M. Arif Wani,Bhiksha Raj,Dejing Dou Book 2022 The Editor(s) (if applicable) and The Author(s), under

[复制链接]
查看: 26213|回复: 35
发表于 2025-3-21 19:23:30 | 显示全部楼层 |阅读模式
书目名称Deep Learning Applications, Volume 3
编辑M. Arif Wani,Bhiksha Raj,Dejing Dou
视频video
概述Describes novel ways of using deep learning architectures for real-world applications.Presents results of using deep learning models for selected applications.Provides a copy of software/code and test
丛书名称Advances in Intelligent Systems and Computing
图书封面Titlebook: Deep Learning Applications, Volume 3;  M. Arif Wani,Bhiksha Raj,Dejing Dou Book 2022 The Editor(s) (if applicable) and The Author(s), under
描述.This book presents a compilation of extended version of selected papers from the 19th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2020) and focuses on deep learning networks in applications such as pneumonia detection in chest X-ray images, object detection and classification, RGB and depth image fusion, NLP tasks, dimensionality estimation, time series forecasting, building electric power grid for controllable energy resources, guiding charities in maximizing donations, and robotic control in industrial environments. Novel ways of using convolutional neural networks, recurrent neural network, autoencoder, deep evidential active learning, deep rapid class augmentation techniques, BERT models, multi-task learning networks, model compression and acceleration techniques, and conditional Feature Augmented and Transformed GAN (cFAT-GAN)  for the above applications are covered in this book. Readers will find insights to help them realize novel waysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the ind
出版日期Book 2022
关键词Deep Learning Architectures; Deep Learning Algorithms; Deep Learning Models; Convolutional Neural Netwo
版次1
doihttps://doi.org/10.1007/978-981-16-3357-7
isbn_softcover978-981-16-3356-0
isbn_ebook978-981-16-3357-7Series ISSN 2194-5357 Series E-ISSN 2194-5365
issn_series 2194-5357
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Deep Learning Applications, Volume 3影响因子(影响力)




书目名称Deep Learning Applications, Volume 3影响因子(影响力)学科排名




书目名称Deep Learning Applications, Volume 3网络公开度




书目名称Deep Learning Applications, Volume 3网络公开度学科排名




书目名称Deep Learning Applications, Volume 3被引频次




书目名称Deep Learning Applications, Volume 3被引频次学科排名




书目名称Deep Learning Applications, Volume 3年度引用




书目名称Deep Learning Applications, Volume 3年度引用学科排名




书目名称Deep Learning Applications, Volume 3读者反馈




书目名称Deep Learning Applications, Volume 3读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:11:57 | 显示全部楼层
发表于 2025-3-22 03:14:13 | 显示全部楼层
发表于 2025-3-22 08:25:11 | 显示全部楼层
A Comprehensive Analysis of Subword Contextual Embeddings for Languages with Rich Morphology,models significantly differ across languages. Moreover, our analysis provided various critical findings of multi-task learning (MTL), transfer learning, and external features in different settings. We further verified these findings on noisy datasets for the Sentiment Analysis task as a case study.
发表于 2025-3-22 08:45:59 | 显示全部楼层
发表于 2025-3-22 13:00:13 | 显示全部楼层
发表于 2025-3-22 19:56:02 | 显示全部楼层
发表于 2025-3-23 01:15:24 | 显示全部楼层
Lecture Notes in Mechanical Engineering we investigate the effect of the performance of four well-known depth estimation methods on our fusion architecture. Moreover, we compared the fusion architecture with two uni-modal architectures which use only RGB or depth images for object detection. The experimental results on the KITTI dataset
发表于 2025-3-23 02:57:32 | 显示全部楼层
2194-5357 ysof using deep learning architectures and algorithms in real-world applications and contexts, making the book an essential reference guide for academic researchers, professionals, software engineers in the ind978-981-16-3356-0978-981-16-3357-7Series ISSN 2194-5357 Series E-ISSN 2194-5365
发表于 2025-3-23 08:18:00 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 03:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表