用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Generative Models, and Data Augmentation, Labelling, and Imperfections; First Workshop, DGM4 Sandy Engelhardt,Ilkay Oksuz,Yuan Xue Con

[复制链接]
楼主: 贪求
发表于 2025-3-25 05:03:03 | 显示全部楼层
发表于 2025-3-25 09:07:32 | 显示全部楼层
Conditional Generation of Medical Images via Disentangled Adversarial Inferencee variables. We conduct extensive qualitative and quantitative assessments on two publicly available medical imaging datasets (LIDC and HAM10000) and test for conditional image generation and style-content disentanglement. We also show that our proposed model (DRAI) achieves the best disentanglement score and has the best overall performance.
发表于 2025-3-25 13:12:07 | 显示全部楼层
发表于 2025-3-25 16:52:57 | 显示全部楼层
发表于 2025-3-25 21:32:22 | 显示全部楼层
One-Shot Learning for Landmarks Detectionthm in order to perform automatic organ localization and landmark matching. We investigated both qualitatively and quantitatively the performance of the proposed approach on clinical temporal bone CT volumes. The results show that our one-shot learning scheme converges well and leads to a good accuracy of the landmark positions.
发表于 2025-3-26 02:02:35 | 显示全部楼层
发表于 2025-3-26 06:03:08 | 显示全部楼层
Conception of Design Science and its Methods latent space to generate images from a broader domain than what was observed. We show that using our generative approach for ultrasound data augmentation and domain adaptation during training improves the performance of the resulting deep learning models, even when tested within the observed domain.
发表于 2025-3-26 12:20:38 | 显示全部楼层
Helena M. Müller,Melanie Reuter-Oppermanndel is trained to generate fake brain connectivity matrices, which are expected to reflect the latent distribution and topological features of the real brain network data. Numerical results show that the BrainNetGAN outperforms the benchmarking algorithms in augmenting the brain networks for AD classification tasks.
发表于 2025-3-26 14:58:07 | 显示全部楼层
发表于 2025-3-26 19:44:52 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 19:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表