找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Generative Models; Second MICCAI Worksh Anirban Mukhopadhyay,Ilkay Oksuz,Yixuan Yuan Conference proceedings 2022 The Editor(s) (if app

[复制链接]
楼主: GOLF
发表于 2025-3-26 22:42:01 | 显示全部楼层
发表于 2025-3-27 05:04:52 | 显示全部楼层
3D (c)GAN for Whole Body MR Synthesises 3D medical images. The model can easily be conditioned on meta data, for example available patient information. We evaluate the quality of the generated images and compare our model against the 3D-StyleGAN model which is also designed for 3D medical image synthesis.
发表于 2025-3-27 05:59:15 | 显示全部楼层
Conference proceedings 2022rative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community..
发表于 2025-3-27 09:38:17 | 显示全部楼层
0302-9743 ch as Generative Adversarial Network (GAN) and Variational Auto-Encoder (VAE) are currently receiving widespread attention from not only the computer vision and machine learning communities, but also in the MIC and CAI community..978-3-031-18575-5978-3-031-18576-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-3-27 16:39:36 | 显示全部楼层
发表于 2025-3-27 20:00:49 | 显示全部楼层
Abstract Factory (Abstract Factory),the transformer via cross-attention, i.e. supplying anatomical reference information from paired CT images to aid the PET anomaly detection task. Using 83 whole-body PET/CT samples containing various cancer types, we show that our anomaly detection method is robust and capable of achieving accurate
发表于 2025-3-27 23:34:40 | 显示全部楼层
发表于 2025-3-28 04:47:00 | 显示全部楼层
The Abuse of Discretionary PowerIPF. ATN was shown to be quicker and easier to train than simGAN. ATN-based airway measurements showed consistently stronger associations with mortality than simGAN-derived airway metrics on IPF CTs. Airway synthesis by a transformation network that refines synthetic data using perceptual losses is
发表于 2025-3-28 07:07:43 | 显示全部楼层
发表于 2025-3-28 10:36:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 03:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表