找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Fusion of Computational and Symbolic Processing; Takeshi Furuhashi,Shun’Ichi Tano,Hans-Arno Jacobse Book 2001 Springer-Verlag Berlin

[复制链接]
查看: 34138|回复: 49
发表于 2025-3-21 17:34:38 | 显示全部楼层 |阅读模式
书目名称Deep Fusion of Computational and Symbolic Processing
编辑Takeshi Furuhashi,Shun’Ichi Tano,Hans-Arno Jacobse
视频video
概述First publication of recent results of study under the name of integration of computational processing and symbolic processing.Thorough coverage of recent attempts to combine/hybridize/fuse symbolic p
丛书名称Studies in Fuzziness and Soft Computing
图书封面Titlebook: Deep Fusion of Computational and Symbolic Processing;  Takeshi Furuhashi,Shun’Ichi Tano,Hans-Arno Jacobse Book 2001 Springer-Verlag Berlin
描述Symbolic processing has limitations highlighted by the symbol grounding problem. Computational processing methods, like fuzzy logic, neural networks, and statistical methods have appeared to overcome these problems. However, they also suffer from drawbacks in that, for example, multi-stage inference is difficult to implement. Deep fusion of symbolic and computational processing is expected to open a new paradigm for intelligent systems. Symbolic processing and computational processing should interact at all abstract or computational levels. For this undertaking, attempts to combine, hybridize, and fuse these processing methods should be thoroughly investigated and the direction of novel fusion approaches should be clarified. This book contains the current status of this attempt and also discusses future directions.
出版日期Book 2001
关键词Computational Processing; Neuro-symbolic System; Symbolic Processing; control; dynamical systems; fuzzy l
版次1
doihttps://doi.org/10.1007/978-3-7908-1837-6
isbn_softcover978-3-662-00373-2
isbn_ebook978-3-7908-1837-6Series ISSN 1434-9922 Series E-ISSN 1860-0808
issn_series 1434-9922
copyrightSpringer-Verlag Berlin Heidelberg 2001
The information of publication is updating

书目名称Deep Fusion of Computational and Symbolic Processing影响因子(影响力)




书目名称Deep Fusion of Computational and Symbolic Processing影响因子(影响力)学科排名




书目名称Deep Fusion of Computational and Symbolic Processing网络公开度




书目名称Deep Fusion of Computational and Symbolic Processing网络公开度学科排名




书目名称Deep Fusion of Computational and Symbolic Processing被引频次




书目名称Deep Fusion of Computational and Symbolic Processing被引频次学科排名




书目名称Deep Fusion of Computational and Symbolic Processing年度引用




书目名称Deep Fusion of Computational and Symbolic Processing年度引用学科排名




书目名称Deep Fusion of Computational and Symbolic Processing读者反馈




书目名称Deep Fusion of Computational and Symbolic Processing读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:10:29 | 显示全部楼层
978-3-662-00373-2Springer-Verlag Berlin Heidelberg 2001
发表于 2025-3-22 00:42:05 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-3603-1st (symbolic) and distributed representations, based on the two-level approach proposed in Sun (1995). The model learns and utilizes procedural and declarative knowledge, tapping into the synergy of the two types of processes. It unifies neural, reinforcement, and symbolic methods to perform on-line
发表于 2025-3-22 06:42:02 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-3603-1se methods is studied. A special processor to combine different methods is necessary for integration. It is called an integrator. Among various information-processing methods, only declarative knowledge-based method is suited for an integrator. Then the realistic way of developing the integrator is
发表于 2025-3-22 09:42:00 | 显示全部楼层
发表于 2025-3-22 16:30:35 | 显示全部楼层
发表于 2025-3-22 17:09:34 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-3603-1 “fuzzy” sequential knowledge for the description of dynamic characteristics of a system. Symbolic Dynamic System(SDS), a model for symbolic sequences, is extended to deal with “fuzzy” symbolic sequences. This approach introduces topological nature into the symbolic sequences, which allows an interp
发表于 2025-3-23 00:51:20 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-3603-1 comparison with its predecessor because the learning and the knowledge extraction process are faster and are accomplished in an incremental way . INSS offers a new approach applicable to constructive machine learning with high-performance tools, even in the presence of incomplete or erroneous data.
发表于 2025-3-23 01:33:47 | 显示全部楼层
发表于 2025-3-23 05:46:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 15:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表