找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science for Transport; A Self-Study Guide w Charles Fox Textbook 2018 Springer International Publishing AG 2018 Quantitative Geography

[复制链接]
查看: 19352|回复: 47
发表于 2025-3-21 17:51:26 | 显示全部楼层 |阅读模式
书目名称Data Science for Transport
副标题A Self-Study Guide w
编辑Charles Fox
视频video
概述Introduces data science for students of transport studies, geography and the geosciences, as well as transport professionals.The only book to integrate the whole stack of transport data analysis.Addre
丛书名称Springer Textbooks in Earth Sciences, Geography and Environment
图书封面Titlebook: Data Science for Transport; A Self-Study Guide w Charles Fox Textbook 2018 Springer International Publishing AG 2018 Quantitative Geography
描述The quantity, diversity and availability of transport data is increasing rapidly, requiring new skills in the management and interrogation of data and databases. Recent years have seen a new wave of ‘big data‘, ‘Data Science‘, and ‘smart cities‘ changing the world, with the Harvard Business Review describing Data Science as the "sexiest job of the 21st century". Transportation professionals and researchers need to be able to use data and databases in order to establish quantitative, empirical facts, and to validate and challenge their mathematical models, whose axioms have traditionally often been assumed rather than rigorously tested against data. This book takes a highly practical approach to learning about Data Science tools and their application to investigating transport issues. The focus is principally on practical, professional work with real data and tools, including business and ethical issues..".Transport modeling practice was developed in a data poor world, and many of our current techniques and skills are building on that sparsity. In a new data rich world, the required tools are different and the ethical questions around data and privacy are definitely different. I am
出版日期Textbook 2018
关键词Quantitative Geography; Transport Studies; Data Science for Geography and Geoscience; Machine Learning
版次1
doihttps://doi.org/10.1007/978-3-319-72953-4
isbn_softcover978-3-030-10291-3
isbn_ebook978-3-319-72953-4Series ISSN 2510-1307 Series E-ISSN 2510-1315
issn_series 2510-1307
copyrightSpringer International Publishing AG 2018
The information of publication is updating

书目名称Data Science for Transport影响因子(影响力)




书目名称Data Science for Transport影响因子(影响力)学科排名




书目名称Data Science for Transport网络公开度




书目名称Data Science for Transport网络公开度学科排名




书目名称Data Science for Transport被引频次




书目名称Data Science for Transport被引频次学科排名




书目名称Data Science for Transport年度引用




书目名称Data Science for Transport年度引用学科排名




书目名称Data Science for Transport读者反馈




书目名称Data Science for Transport读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:30:13 | 显示全部楼层
发表于 2025-3-22 01:27:37 | 显示全部楼层
发表于 2025-3-22 04:52:28 | 显示全部楼层
Database Design,During the Python exercise, we used text processing operations to step through a CSV file and process each line at a time. For some applications, this method is scaled up to store and process larger data sets. For example we might have a separate CSV file for each year’s road accidents for many years, and perhaps also for many countries.
发表于 2025-3-22 10:46:08 | 显示全部楼层
Spatial Data,Transport data is generally about motion through time and space. The previous chapter considered the complexities of representing time – here we will think about space.
发表于 2025-3-22 14:26:58 | 显示全部楼层
发表于 2025-3-22 17:03:22 | 显示全部楼层
发表于 2025-3-23 00:52:39 | 显示全部楼层
发表于 2025-3-23 04:29:47 | 显示全部楼层
发表于 2025-3-23 07:29:00 | 显示全部楼层
Data Visualisation,e for the payoff: visualizing the results in full colour! This chapter will give a short overview of relevant human visual perception, present a “gallery” of classic transport-related data visualizations, then show how to produce some of your own.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 04:06
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表