找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science and Predictive Analytics; Biomedical and Healt Ivo D. Dinov Textbook 20181st edition Ivo D. Dinov 2018 big data.R.statistical

[复制链接]
查看: 47461|回复: 62
发表于 2025-3-21 19:26:10 | 显示全部楼层 |阅读模式
书目名称Data Science and Predictive Analytics
副标题Biomedical and Healt
编辑Ivo D. Dinov
视频video
概述A novel transdisciplinary treatise of predictive health analytics.Complete and self-contained treatment of the theory, experimental modeling, system development, and validation of predictive health an
图书封面Titlebook: Data Science and Predictive Analytics; Biomedical and Healt Ivo D. Dinov Textbook 20181st edition Ivo D. Dinov 2018 big data.R.statistical
描述Over the past decade, Big Data have become ubiquitous in all economic sectors, scientific disciplines, and human activities. They have led to striking technological advances, affecting all human experiences. Our ability to manage, understand, interrogate, and interpret such extremely large, multisource, heterogeneous, incomplete, multiscale, and incongruent data has not kept pace with the rapid increase of the volume, complexity and proliferation of the deluge of digital information. There are three reasons for this shortfall. First, the volume of data is increasing much faster than the corresponding rise of our computational processing power (Kryder’s law > Moore’s law). Second, traditional discipline-bounds inhibit expeditious progress. Third, our education and training activities have fallen behind the accelerated trend of scientific, information, and communication advances. There are very few rigorous instructional resources, interactive learning materials, and dynamic trainingenvironments that support active data science learning. The textbook balances the mathematical foundations with dexterous demonstrations and examples of data, tools, modules and workflows that serve as pi
出版日期Textbook 20181st edition
关键词big data; R; statistical computing; predictive analytics; data science; health analytics; machine learning
版次1
doihttps://doi.org/10.1007/978-3-319-72347-1
isbn_softcover978-3-030-10187-9
isbn_ebook978-3-319-72347-1
copyrightIvo D. Dinov 2018
The information of publication is updating

书目名称Data Science and Predictive Analytics影响因子(影响力)




书目名称Data Science and Predictive Analytics影响因子(影响力)学科排名




书目名称Data Science and Predictive Analytics网络公开度




书目名称Data Science and Predictive Analytics网络公开度学科排名




书目名称Data Science and Predictive Analytics被引频次




书目名称Data Science and Predictive Analytics被引频次学科排名




书目名称Data Science and Predictive Analytics年度引用




书目名称Data Science and Predictive Analytics年度引用学科排名




书目名称Data Science and Predictive Analytics读者反馈




书目名称Data Science and Predictive Analytics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:03:03 | 显示全部楼层
发表于 2025-3-22 02:37:39 | 显示全部楼层
发表于 2025-3-22 05:15:25 | 显示全部楼层
发表于 2025-3-22 12:42:14 | 显示全部楼层
Linear Algebra & Matrix Computing,is generally challenging to visualize complex data, e.g., large vectors, tensors, and tables in n-dimensional Euclidian spaces (. ≥ 3). Linear algebra allows us to mathematically represent, computationally model, statistically analyze, synthetically simulate, and visually summarize such complex data
发表于 2025-3-22 13:11:01 | 显示全部楼层
Dimensionality Reduction,ber of features when modeling a very large number of variables. Dimension reduction can help us extract a set of “uncorrelated” principal variables and reduce the complexity of the data. We are not simply picking some of the original variables. Rather, we are constructing new “uncorrelated” variable
发表于 2025-3-22 17:55:42 | 显示全部楼层
发表于 2025-3-23 00:39:17 | 显示全部楼层
发表于 2025-3-23 04:40:02 | 显示全部楼层
Decision Tree Divide and Conquer Classification,les. In some cases, we need to specify well stated rules for our decisions, just like a scoring criterion for driving ability or credit scoring for loan underwriting. The decisions in many situations actually require having a clear and easily understandable decision tree to follow the classification
发表于 2025-3-23 08:58:00 | 显示全部楼层
Forecasting Numeric Data Using Regression Models, this Chapter, we will focus on specific model-based statistical methods providing forecasting and classification functionality. Specifically, we will (1) demonstrate the predictive power of multiple linear regression; (2) show the foundation of regression trees and model trees; and (3) examine two
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-4-30 12:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表