找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Science and Intelligent Applications; Proceedings of ICDSI Ketan Kotecha,Vincenzo Piuri,Rajan Patel Conference proceedings 2021 The Ed

[复制链接]
楼主: architect
发表于 2025-3-25 05:46:24 | 显示全部楼层
发表于 2025-3-25 08:48:14 | 显示全部楼层
978-981-15-4473-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
发表于 2025-3-25 15:34:00 | 显示全部楼层
发表于 2025-3-25 16:25:54 | 显示全部楼层
Lecture Notes on Data Engineering and Communications Technologieshttp://image.papertrans.cn/d/image/263096.jpg
发表于 2025-3-25 22:45:08 | 显示全部楼层
A Comparative Study of Classification Techniques in Context of Microblogs Posted During Natural Disrom the microblog tweets. The evaluation metrics that were used are precision, recall and F-score. We have observed that support vector machine (SVM) has the highest accuracy in classification of tweets based on pre-defined retrieval criteria.
发表于 2025-3-26 01:55:38 | 显示全部楼层
Compromise, Negotiation and Group Decisionhistoric prices of the stock to predict the stock recital. For combining the above approaches, we are using the decision tree approach of machine learning for classification and prediction for more accurate prophecy. The proposed algorithm gives above 70% accuracy for the given data.
发表于 2025-3-26 08:08:18 | 显示全部楼层
Compromise, Negotiation and Group Decisiontem to achieve properties like decentralization, transparency, and immutability. These properties combined with randomness and verifiability lead to this significant lottery design to be unique of its kind.
发表于 2025-3-26 09:44:55 | 显示全部楼层
发表于 2025-3-26 15:59:16 | 显示全部楼层
Parallelism in Computational Statistics to generate semantic rules. This inductive learning algorithm can automatically select useful join paths and properties to construct rules from an ontology with many concepts. The learned semantic rules are effective for optimization of SPARQL query because they match query patterns and reflect data regularities.
发表于 2025-3-26 19:12:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 19:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表