找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Mining in Finance; Advances in Relation Boris Kovalerchuk,Evgenii Vityaev Book 2000 Springer Science+Business Media New York 2000 Fina

[复制链接]
查看: 20249|回复: 35
发表于 2025-3-21 19:38:57 | 显示全部楼层 |阅读模式
书目名称Data Mining in Finance
副标题Advances in Relation
编辑Boris Kovalerchuk,Evgenii Vityaev
视频videohttp://file.papertrans.cn/263/262964/262964.mp4
丛书名称The Springer International Series in Engineering and Computer Science
图书封面Titlebook: Data Mining in Finance; Advances in Relation Boris Kovalerchuk,Evgenii Vityaev Book 2000 Springer Science+Business Media New York 2000 Fina
描述.Data Mining in Finance. presents a comprehensive overviewof major algorithmic approaches to predictive data mining, includingstatistical, neural networks, ruled-based, decision-tree, andfuzzy-logic methods, and then examines the suitability of theseapproaches to financial data mining. The book focuses specifically onrelational data mining (RDM), which is a learning method able to learnmore expressive rules than other symbolic approaches. RDM is thusbetter suited for financial mining, because it is able to make greateruse of underlying domain knowledge. Relational data mining also has abetter ability to explain the discovered rules - an abilitycritical for avoiding spurious patterns which inevitably arise whenthe number of variables examined is very large. The earlier algorithmsfor relational data mining, also known as inductive logic programming(ILP), suffer from a relative computational inefficiency and haverather limited tools for processing numerical data. ..Data Mining in Finance. introduces a new approach, combiningrelational data mining with the analysis of statistical significanceof discovered rules. This reduces the search space and speeds up thealgorithms. The book also p
出版日期Book 2000
关键词Finance; Symbol; algorithms; artificial intelligence; data mining; fuzzy; intelligence; knowledge; knowledge
版次1
doihttps://doi.org/10.1007/b116453
isbn_softcover978-1-4757-7332-3
isbn_ebook978-0-306-47018-9Series ISSN 0893-3405
issn_series 0893-3405
copyrightSpringer Science+Business Media New York 2000
The information of publication is updating

书目名称Data Mining in Finance影响因子(影响力)




书目名称Data Mining in Finance影响因子(影响力)学科排名




书目名称Data Mining in Finance网络公开度




书目名称Data Mining in Finance网络公开度学科排名




书目名称Data Mining in Finance被引频次




书目名称Data Mining in Finance被引频次学科排名




书目名称Data Mining in Finance年度引用




书目名称Data Mining in Finance年度引用学科排名




书目名称Data Mining in Finance读者反馈




书目名称Data Mining in Finance读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:33:37 | 显示全部楼层
发表于 2025-3-22 00:59:38 | 显示全部楼层
发表于 2025-3-22 05:15:09 | 显示全部楼层
Financial Applications of Relational Data Mining, of these regularities had shown about 75 % of correct forecasts on test data (1995–1996). The target variable was predicted using separately SP500 (close) and the target variable’s own history. Comparison of performance with other methods is presented in the next chapter.
发表于 2025-3-22 12:29:04 | 显示全部楼层
The Springer International Series in Engineering and Computer Sciencehttp://image.papertrans.cn/d/image/262964.jpg
发表于 2025-3-22 15:34:35 | 显示全部楼层
https://doi.org/10.1007/b116453Finance; Symbol; algorithms; artificial intelligence; data mining; fuzzy; intelligence; knowledge; knowledge
发表于 2025-3-22 17:32:33 | 显示全部楼层
978-1-4757-7332-3Springer Science+Business Media New York 2000
发表于 2025-3-22 21:48:45 | 显示全部楼层
发表于 2025-3-23 04:08:03 | 显示全部楼层
Complications of Endodontic Surgery theoretical viewpoint Computational experiments presented in this chapter have shown these advantages practically for real financial data..Relational data mining methods and MMDR method, in particular, are able to discover useful regularities in financial time series for stock market prediction. In
发表于 2025-3-23 08:45:01 | 显示全部楼层
Book 2000l inefficiency and haverather limited tools for processing numerical data. ..Data Mining in Finance. introduces a new approach, combiningrelational data mining with the analysis of statistical significanceof discovered rules. This reduces the search space and speeds up thealgorithms. The book also p
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-11-13 19:36
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表