找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data Analytics; Models and Algorithm Thomas A. Runkler Textbook 20203rd edition Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

[复制链接]
楼主: 桌前不可入
发表于 2025-3-26 21:58:21 | 显示全部楼层
发表于 2025-3-27 04:16:52 | 显示全部楼层
发表于 2025-3-27 05:24:24 | 显示全部楼层
978-3-658-29778-7Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020
发表于 2025-3-27 10:26:56 | 显示全部楼层
https://doi.org/10.1007/978-1-0716-3678-7, image data, and biomedical data. We define the terms data analytics, data mining, knowledge discovery, and the KDD and CRISP-DM processes. Typical data analysis projects can be divided into several phases: preparation, preprocessing, analysis, and postprocessing. The chapters of this book are stru
发表于 2025-3-27 16:38:38 | 显示全部楼层
Mei-Sheng Xiao,Jeremy E. Wiluszdered because certain mathematical operations are only appropriate for specific scales. Numerical data can be represented by sets, vectors, or matrices. Data analysis is often based on dissimilarity measures (like matrix norms, Lebesgue/Minkowski norms) or on similarity measures (like cosine, overla
发表于 2025-3-27 21:06:45 | 显示全部楼层
Suman Singh,Aniruddha Das,Amaresh C. Pandably heterogeneous information sources. We distinguish deterministic and stochastic errors. Deterministic errors can sometimes be easily corrected. Inliers and outliers may be identified and removed or corrected. Inliers, outliers, or noise can be reduced by filtering. We distinguish many different f
发表于 2025-3-27 23:22:15 | 显示全部楼层
发表于 2025-3-28 06:02:10 | 显示全部楼层
发表于 2025-3-28 06:29:17 | 显示全部楼层
发表于 2025-3-28 11:54:05 | 显示全部楼层
Circular RNAs Act as miRNA Spongesy or a Moore machine. This leads to recurrent or auto-regressive models. Building forecasting models is essentially a regression task. The training data sets for forecasting models are generated by finite unfolding in time. Popular linear forecasting models are auto-regressive models (AR) and genera
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 12:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表