找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
查看: 15779|回复: 57
发表于 2025-3-21 19:53:42 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2024
副标题18th European Confer
编辑Aleš Leonardis,Elisa Ricci,Gül Varol
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic
描述.The multi-volume set of LNCS books with volume numbers 15059 up to 15147 constitutes the refereed proceedings of the 18th European Conference on Computer Vision, ECCV 2024, held in Milan, Italy, during September 29–October 4, 2024...The 2387 papers presented in these proceedings were carefully reviewed and selected from a total of 8585 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; motion estimation..
出版日期Conference proceedings 2025
关键词artificial intelligence; computer networks; computer systems; computer vision; education; Human-Computer
版次1
doihttps://doi.org/10.1007/978-3-031-73247-8
isbn_softcover978-3-031-73246-1
isbn_ebook978-3-031-73247-8Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Computer Vision – ECCV 2024影响因子(影响力)




书目名称Computer Vision – ECCV 2024影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2024网络公开度




书目名称Computer Vision – ECCV 2024网络公开度学科排名




书目名称Computer Vision – ECCV 2024被引频次




书目名称Computer Vision – ECCV 2024被引频次学科排名




书目名称Computer Vision – ECCV 2024年度引用




书目名称Computer Vision – ECCV 2024年度引用学科排名




书目名称Computer Vision – ECCV 2024读者反馈




书目名称Computer Vision – ECCV 2024读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:59:26 | 显示全部楼层
发表于 2025-3-22 03:17:30 | 显示全部楼层
Data Collection-Free Masked Video Modeling,cerns related to privacy, licensing, and inherent biases. Synthesizing data is one of the promising ways to solve these issues, yet pre-training solely on synthetic data has its own challenges. In this paper, we introduce an effective self-supervised learning framework for videos that leverages read
发表于 2025-3-22 06:00:54 | 显示全部楼层
,Protecting NeRFs’ Copyright via Plug-And-Play Watermarking Base Model,s intellectual property has become increasingly important. In this paper, we propose ., which adopts a plug-and-play strategy to protect NeRF’s copyright during its creation. NeRFProtector utilizes a pre-trained watermarking base model, enabling NeRF creators to embed binary messages directly while
发表于 2025-3-22 10:44:28 | 显示全部楼层
,Pixel-Aware Stable Diffusion for Realistic Image Super-Resolution and Personalized Stylization,pre-trained text-to-image stable diffusion models provide a potential solution to the challenging realistic image super-resolution (Real-ISR) and image stylization problems with their strong generative priors. However, the existing methods along this line often fail to keep faithful pixel-wise image
发表于 2025-3-22 13:34:46 | 显示全部楼层
发表于 2025-3-22 19:30:16 | 显示全部楼层
发表于 2025-3-23 00:45:02 | 显示全部楼层
,AEDNet: Adaptive Embedding and Multiview-Aware Disentanglement for Point Cloud Completion,l structure of the object and reconstructs local details. To this end, we propose a global perception and local attention network, termed AEDNet, for point cloud completion. The proposed AEDNet utilizes designed adaptive point cloud embedding and disentanglement (AED) module in both the encoder and
发表于 2025-3-23 03:28:41 | 显示全部楼层
,Synergy of Sight and Semantics: Visual Intention Understanding with CLIP,esource-intensive annotation process. Current leading approaches are held back by the limited amount of labeled data. To mitigate the scarcity of annotated data, we leverage the Contrastive Language-Image Pre-training (CLIP) model, renowned for its wealth knowledge in textual and visual modalities.
发表于 2025-3-23 08:19:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 22:45
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表