找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2024; 18th European Confer Aleš Leonardis,Elisa Ricci,Gül Varol Conference proceedings 2025 The Editor(s) (if applic

[复制链接]
楼主: vein220
发表于 2025-3-28 14:49:12 | 显示全部楼层
,RecurrentBEV: A Long-Term Temporal Fusion Framework for Multi-view 3D Detection, fusion ability while still enjoying efficient inference latency and memory consumption during inference. Extensive experiments on the nuScenes benchmark demonstrate its effectiveness, achieving a new state-of-the-art performance of 57.4. mAP and 65.1. NDS on the test set. The real-time version (25.
发表于 2025-3-28 18:48:50 | 显示全部楼层
发表于 2025-3-29 02:37:57 | 显示全部楼层
发表于 2025-3-29 05:39:01 | 显示全部楼层
发表于 2025-3-29 07:13:16 | 显示全部楼层
,Straightforward Layer-Wise Pruning for More Efficient Visual Adaptation,dimensional space obtained through ch1tspsSNE, SLS facilitates informed pruning decisions. Our study reveals that layer-wise pruning, with a focus on storing pruning indices, addresses storage volume concerns. Notably, mainstream Layer-wise pruning methods may not be suitable for assessing layer imp
发表于 2025-3-29 13:31:47 | 显示全部楼层
发表于 2025-3-29 16:50:22 | 显示全部楼层
发表于 2025-3-29 23:32:17 | 显示全部楼层
,Domain Shifting: A Generalized Solution for Heterogeneous Cross-Modality Person Re-Identification,lities. Further, a domain alignment loss is developed to alleviate the cross-modality discrepancies by aligning the patterns across modalities. In addition, a domain distillation loss is designed to distill identity-invariant knowledge by learning the distribution of different modalities. Extensive
发表于 2025-3-30 03:02:19 | 显示全部楼层
,Self-Supervised Video Desmoking for Laparoscopic Surgery,zation term are presented to avoid trivial solutions. In addition, we construct a real surgery video dataset for desmoking, which covers a variety of smoky scenes. Extensive experiments on the dataset show that our SelfSVD can remove smoke more effectively and efficiently while recovering more photo
发表于 2025-3-30 08:05:30 | 显示全部楼层
,Removing Rows and Columns of Tokens in Vision Transformer Enables Faster Dense Prediction Without Rsed fusion method with faster speed and demonstrates higher potential in terms of robustness. Our method was applied to Segmenter, MaskDINO and SWAG, exhibiting promising performance on four tasks, including semantic segmentation, instance segmentation, panoptic segmentation, and image classificatio
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 23:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表