找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Current Trends in Number Theory; Sukumar Das Adhikari,Shashikant A. Katre,B. Ramakr Book 2002 Hindustan Book Agency (India) 2002

[复制链接]
查看: 18634|回复: 66
发表于 2025-3-21 17:03:11 | 显示全部楼层 |阅读模式
书目名称Current Trends in Number Theory
编辑Sukumar Das Adhikari,Shashikant A. Katre,B. Ramakr
视频video
图书封面Titlebook: Current Trends in Number Theory;  Sukumar Das Adhikari,Shashikant A. Katre,B. Ramakr Book 2002 Hindustan Book Agency (India) 2002
出版日期Book 2002
版次1
doihttps://doi.org/10.1007/978-93-86279-09-5
isbn_ebook978-93-86279-09-5
copyrightHindustan Book Agency (India) 2002
The information of publication is updating

书目名称Current Trends in Number Theory影响因子(影响力)




书目名称Current Trends in Number Theory影响因子(影响力)学科排名




书目名称Current Trends in Number Theory网络公开度




书目名称Current Trends in Number Theory网络公开度学科排名




书目名称Current Trends in Number Theory被引频次




书目名称Current Trends in Number Theory被引频次学科排名




书目名称Current Trends in Number Theory年度引用




书目名称Current Trends in Number Theory年度引用学科排名




书目名称Current Trends in Number Theory读者反馈




书目名称Current Trends in Number Theory读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:04:27 | 显示全部楼层
发表于 2025-3-22 02:09:48 | 显示全部楼层
Sieving Using Dirichlet Series, respect to a single prime. One tries to get some .-adic analytic function to interpolate the values of the sequence and in this way study the sequence. This method can be viewed as the study of the sequence with respect to non-archimedean (or .-adic) absolute values.
发表于 2025-3-22 07:08:17 | 显示全部楼层
Overview: 978-93-86279-09-5
发表于 2025-3-22 09:19:10 | 显示全部楼层
https://doi.org/10.1007/978-3-658-35727-6term in the average .(.) = Σ.’(.). We apply the method of averaging over suitable arithmetic progressions to get an extension of the Ω-results obtained by Y.-F.S. Pétermann in the case of the sum-of-divisors function, the classical .(.).
发表于 2025-3-22 13:43:18 | 显示全部楼层
发表于 2025-3-22 17:24:26 | 显示全部楼层
https://doi.org/10.1007/978-3-658-35727-6lex numbers, this can be done using theta function identities. Abstractly, the group law was written down by Cantor [1]. As observed by Koblitz [2], this makes it possible to use the set of points on the Jacobian of a hyperelliptic curve (or more succintly, a hyperelliptic Jacobian) over a finite field as the basis of a public-key cryptosystem.
发表于 2025-3-22 21:18:20 | 显示全部楼层
Springer Fachmedien Wiesbaden GmbH we give classical results on the upper bounds of the order of Aut(.). In §2, we discuss the relation between Aut(.) and .-ranks of ., when the ground field . has characteristic . > 0. Finally in §3, we give an upper bound of the orders of abelian subgroups of Aut(.).
发表于 2025-3-23 03:13:14 | 显示全部楼层
Springer Fachmedien Wiesbaden GmbHlds. We state these conjectures, and also the more recent Weil theorem for singular curves defined over finite fields. We end by remarking on some explicit results we have obtained for the zeta functions of some concrete classes of curves (both non-singular and singular) defined over a certain class of finite fields.
发表于 2025-3-23 05:58:17 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 10:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表