找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Cumulative Sum Charts and Charting for Quality Improvement; Douglas M. Hawkins,David H. Olwell Book 1998 Springer Science+Business Media N

[复制链接]
楼主: Halloween
发表于 2025-3-25 06:27:38 | 显示全部楼层
发表于 2025-3-25 10:16:09 | 显示全部楼层
发表于 2025-3-25 12:43:20 | 显示全部楼层
https://doi.org/10.1007/978-1-4419-5876-1 SPC data type is “attribute” data, originally counts of the number of good and of defective (or in current terminology “conforming” and “nonconforming ” items) in a sample. We draw the distinction a little differently: into the standard statistical distinction between continuous and discrete measur
发表于 2025-3-25 16:24:56 | 显示全部楼层
https://doi.org/10.1007/978-1-4419-5876-1hem adequately. To get some feeling for this, we try to quantify the impact of uncertainty in the parameter estimates in the case of a normal CUSUM. Suppose that the process stream is . (μ, σ.). To calibrate the CUSUM, we take a sample ofsize m and compute its mean . and standard deviation ., and su
发表于 2025-3-25 20:46:21 | 显示全部楼层
发表于 2025-3-26 02:47:50 | 显示全部楼层
发表于 2025-3-26 04:51:41 | 显示全部楼层
发表于 2025-3-26 11:21:11 | 显示全部楼层
https://doi.org/10.1007/978-1-4419-5876-1 SPC data type is “attribute” data, originally counts of the number of good and of defective (or in current terminology “conforming” and “nonconforming ” items) in a sample. We draw the distinction a little differently: into the standard statistical distinction between continuous and discrete measurements.
发表于 2025-3-26 13:42:08 | 显示全部楼层
发表于 2025-3-26 17:25:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 10:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表