找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Critical Point Theory; Sandwich and Linking Martin Schechter Book 2020 The Editor(s) (if applicable) and The Author(s), under exclusive lic

[复制链接]
楼主: risky-drinking
发表于 2025-3-28 14:46:19 | 显示全部楼层
Let . be a closed, separable subspace of a Hilbert space ..We can define a new norm |.|. satisfying |.|. ≤∥.∥, ∀. ∈ . and such that the topology induced by this norm is equivalent to the weak topology of . on bounded subsets of .. This can be done as follows: Let {..} be an orthonormal basis for .. Define
发表于 2025-3-28 22:42:03 | 显示全部楼层
发表于 2025-3-29 01:25:58 | 显示全部楼层
We now consider some applications of the materials presented in Chaps. .–.. We wish to show how powerful these methods are in obtaining results better than those given by other methods. In Chaps. 7–. we deal with some problems involving Schrödinger equations.
发表于 2025-3-29 05:41:45 | 显示全部楼层
Wortgeschichten aus alten Gemeinden,We consider the system . where . is a map from . = [0, .] to . such that each component ..(.) is a periodic function in .. with period ., and the function . (., .) = . (., .., ⋯ , ..) is continuous from . to . with . For each . the function . (., .) is periodic in . with period ..
发表于 2025-3-29 07:24:52 | 显示全部楼层
Wortgeschichten aus alten Gemeinden,Consider the problem . where . is a bounded domain whose boundary is a smooth manifold, and .(., .) is a continuous function on . The following theorem will be a corollary of the results of this chapter.
发表于 2025-3-29 14:13:08 | 显示全部楼层
https://doi.org/10.1007/978-3-663-02981-6In this chapter we show how monotonicity methods combined with infinite dimensional sandwich pairs can be used to solve very general systems of equations whether or not they are semibounded.
发表于 2025-3-29 18:04:09 | 显示全部楼层
发表于 2025-3-29 22:08:53 | 显示全部楼层
https://doi.org/10.1007/978-3-663-02981-6In this chapter we study periodic solutions of the Dirichlet problem for the semilinear wave equation:
发表于 2025-3-30 02:29:48 | 显示全部楼层
发表于 2025-3-30 04:22:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 03:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表