找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Convexity and Discrete Geometry Including Graph Theory; Mulhouse, France, Se Karim Adiprasito,Imre Bárány,Costin Vilcu Conference proceedin

[复制链接]
楼主: 恰当
发表于 2025-3-25 05:48:40 | 显示全部楼层
Springer Proceedings in Mathematics & Statisticshttp://image.papertrans.cn/c/image/237858.jpg
发表于 2025-3-25 11:02:39 | 显示全部楼层
,Aufbau der Studie — Theorie und Methode,Tudor Zamfirescu was born as what is called in mathematics a counter-example. He is Roumanian, but he was born in Sweden (on 20 April 1944).
发表于 2025-3-25 12:12:28 | 显示全部楼层
发表于 2025-3-25 16:58:56 | 显示全部楼层
发表于 2025-3-25 22:13:32 | 显示全部楼层
,Geschlecht, Männlichkeit und Vaterschaft,It is proved that every convex body in the plane has a point such that the union of the body and its image under reflection in the point is convex. If the body is not centrally symmetric, then it has, in fact, three affinely independent points with this property.
发表于 2025-3-26 01:01:25 | 显示全部楼层
A Science of Mathematical Education,In this paper we shall improve the known bounds for the Helly dimension of the .-sum of centrally symmetric compact convex bodies and, using this bounds, we give the complete list of Hanner polytopes with Helly dimension at most 5.
发表于 2025-3-26 05:14:43 | 显示全部楼层
发表于 2025-3-26 08:37:27 | 显示全部楼层
发表于 2025-3-26 15:37:29 | 显示全部楼层
发表于 2025-3-26 19:09:38 | 显示全部楼层
Hamiltonicity in ,-tree-Halin GraphsA .. is a planar graph ., where . is a forest with at most . components and . is a cycle, such that .(.) is the set of all leaves of ., . bounds a face and no vertex has degree 2. This is a generalization of Halin graphs. We are investigating here the hamiltonicity and traceability of .-tree-Halin graphs.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 20:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表