找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Construction of Mappings for Hamiltonian Systems and Their Applications; Sadrilla S. Abdullaev Book 2006 Springer-Verlag Berlin Heidelberg

[复制链接]
楼主: 缩写
发表于 2025-3-25 07:17:16 | 显示全部楼层
发表于 2025-3-25 11:16:34 | 显示全部楼层
Ungleiche Netzwerke - Vernetzte UngleichheitIn this chapter we study the statistical properties of chaotic motion in a stochastic layer in the context of their relation with the structure of phase space near saddle points. Before discussing this problem we briefly recall the statistical methods of description of chaotic transport in a stochastic layer of dynamical systems.
发表于 2025-3-25 12:11:56 | 显示全部楼层
发表于 2025-3-25 18:49:20 | 显示全部楼层
0075-8450 electromagnetism.Based on the method of canonical transformation of variables and the classical perturbation theory, this innovative book treats the systematic theory of symplectic mappings for Hamiltonian systems and its application to the study of the dynamics and chaos of various physical proble
发表于 2025-3-25 20:01:21 | 显示全部楼层
发表于 2025-3-26 00:22:12 | 显示全部楼层
https://doi.org/10.1007/978-3-531-92140-2 due to the exponential divergence of orbits with close initial conditions. This phenomenon creates the zone of phase space in the small vicinity of the unperturbed separatrix, so-called a . where the motion of system is chaotic (see Sect. 7.1.3).
发表于 2025-3-26 04:22:26 | 显示全部楼层
发表于 2025-3-26 12:08:27 | 显示全部楼层
Klaus-Ove Kahrmann,Peter Bendixen and the phase space coordinates (.) → (λ., λ.). The rescaling parameter . depends only on the frequency of perturbation, ., and the divergence exponent . of unperturbed orbits near the saddle point, . = exp(2.). It means that the topology of phase space near the saddle point is a periodic function of log . with the certain period, log ..
发表于 2025-3-26 14:48:39 | 显示全部楼层
发表于 2025-3-26 19:57:37 | 显示全部楼层
Rescaling Invariance of Hamiltonian Systems Near Saddle Points, and the phase space coordinates (.) → (λ., λ.). The rescaling parameter . depends only on the frequency of perturbation, ., and the divergence exponent . of unperturbed orbits near the saddle point, . = exp(2.). It means that the topology of phase space near the saddle point is a periodic function of log . with the certain period, log ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 11:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表