找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Construction of Global Lyapunov Functions Using Radial Basis Functions; Peter Giesl Book 2007 Springer-Verlag Berlin Heidelberg 2007 Lyapu

[复制链接]
查看: 37245|回复: 35
发表于 2025-3-21 17:07:20 | 显示全部楼层 |阅读模式
书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions
编辑Peter Giesl
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Mathematics
图书封面Titlebook: Construction of Global Lyapunov Functions Using Radial Basis Functions;  Peter Giesl Book 2007 Springer-Verlag Berlin Heidelberg 2007 Lyapu
描述This book combines two mathematical branches: dynamical systems and radialbasisfunctions.Itismainlywrittenformathematicianswithexperience in at least one of these two areas. For dynamical systems we provide a method to construct a Lyapunov function and to determine the basin of attraction of an equilibrium. For radial basis functions we give an important application for the approximation of solutions of linear partial di?erential equations. The book includes a summary of the basic facts of dynamical systems and radial basis functions which are needed in this book. It is, however, no introduction textbook of either area; the reader is encouraged to follow the references for a deeper study of the area. The study of di?erential equations is motivated from numerous appli- tions in physics, chemistry, economics, biology, etc. We focus on autonomous n di?erential equations x ? = f(x), x? R which de?ne a dynamical system. The simplest solutions x(t) of such an equation are equilibria, i.e. solutions x(t)= x which remain constant. An important and non-trivial task is the 0 determination of their basin of attraction. The determination of the basin of attraction is achieved through sublevel
出版日期Book 2007
关键词Lyapunov function; basin of attraction; distribution; error estimates; ordinary differential equation; ra
版次1
doihttps://doi.org/10.1007/978-3-540-69909-5
isbn_softcover978-3-540-69907-1
isbn_ebook978-3-540-69909-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 2007
The information of publication is updating

书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions影响因子(影响力)




书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions影响因子(影响力)学科排名




书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions网络公开度




书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions网络公开度学科排名




书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions被引频次




书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions被引频次学科排名




书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions年度引用




书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions年度引用学科排名




书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions读者反馈




书目名称Construction of Global Lyapunov Functions Using Radial Basis Functions读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:43:46 | 显示全部楼层
发表于 2025-3-22 03:50:54 | 显示全部楼层
发表于 2025-3-22 06:42:59 | 显示全部楼层
Book 2007one of these two areas. For dynamical systems we provide a method to construct a Lyapunov function and to determine the basin of attraction of an equilibrium. For radial basis functions we give an important application for the approximation of solutions of linear partial di?erential equations. The b
发表于 2025-3-22 08:44:24 | 显示全部楼层
发表于 2025-3-22 12:56:36 | 显示全部楼层
Construction of Global Lyapunov Functions Using Radial Basis Functions978-3-540-69909-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
发表于 2025-3-22 19:11:03 | 显示全部楼层
发表于 2025-3-22 22:37:13 | 显示全部楼层
978-3-540-69907-1Springer-Verlag Berlin Heidelberg 2007
发表于 2025-3-23 01:34:10 | 显示全部楼层
发表于 2025-3-23 08:01:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 00:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表