找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computing and Combinatorics; 27th International C Chi-Yeh Chen,Wing-Kai Hon,Chia-Wei Lee Conference proceedings 2021 Springer Nature Switze

[复制链接]
查看: 36412|回复: 60
发表于 2025-3-21 17:51:27 | 显示全部楼层 |阅读模式
书目名称Computing and Combinatorics
副标题27th International C
编辑Chi-Yeh Chen,Wing-Kai Hon,Chia-Wei Lee
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computing and Combinatorics; 27th International C Chi-Yeh Chen,Wing-Kai Hon,Chia-Wei Lee Conference proceedings 2021 Springer Nature Switze
描述.This book constitutes the proceedings of the 27th International Conference on Computing and Combinatorics, COCOON 2021, held in Tainan, Taiwan, in October 2021...Due to the COVID-19 pandemic, COCOON 2021 was organized as a hybrid conference. ..The 56 papers presented in this volume were carefully reviewed and selected from 131 submissions. The papers are divided into the following topical sub-headings: algorithms, approximation algorithms, automata, computational geometry, fault tolerant computing and fault diagnosis, graph algorithms, graph theory and applications, network and algorithms, online algorithm and stream algorithms, parameterized complexity and algorithms, and recreational games. .
出版日期Conference proceedings 2021
关键词algorithm analysis and problem complexity; algorithm design; approximation algorithms; approximation th
版次1
doihttps://doi.org/10.1007/978-3-030-89543-3
isbn_softcover978-3-030-89542-6
isbn_ebook978-3-030-89543-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

书目名称Computing and Combinatorics影响因子(影响力)




书目名称Computing and Combinatorics影响因子(影响力)学科排名




书目名称Computing and Combinatorics网络公开度




书目名称Computing and Combinatorics网络公开度学科排名




书目名称Computing and Combinatorics被引频次




书目名称Computing and Combinatorics被引频次学科排名




书目名称Computing and Combinatorics年度引用




书目名称Computing and Combinatorics年度引用学科排名




书目名称Computing and Combinatorics读者反馈




书目名称Computing and Combinatorics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:40:24 | 显示全部楼层
发表于 2025-3-22 00:51:22 | 显示全部楼层
On the Approximation Hardness of Geodetic Set and Its Variantse this problem. Then, we show that there is no . polynomial-time approximation algorithm for edge geodetic number and strong geodetic number on subcubic bipartite graphs with arbitrarily high girth. We also prove that geodetic number and edge geodetic number are both LOG-.-hard, even on subcubic bip
发表于 2025-3-22 08:13:01 | 显示全部楼层
发表于 2025-3-22 08:52:43 | 显示全部楼层
发表于 2025-3-22 12:58:35 | 显示全部楼层
发表于 2025-3-22 17:25:33 | 显示全部楼层
https://doi.org/10.1007/978-1-4020-9247-3n of the graphs used to construct the generator; this encompasses all prior analyses of the INW generator. Our lower bound matches the upper bound of Braverman–Rao–Raz–Yehudayoff (FOCS 2010, SICOMP 2014) for regular branching programs of alphabet size . except for a gap between their . term and our
发表于 2025-3-22 22:22:11 | 显示全部楼层
发表于 2025-3-23 02:46:29 | 显示全部楼层
Thermal System Design and Optimizatione this problem. Then, we show that there is no . polynomial-time approximation algorithm for edge geodetic number and strong geodetic number on subcubic bipartite graphs with arbitrarily high girth. We also prove that geodetic number and edge geodetic number are both LOG-.-hard, even on subcubic bip
发表于 2025-3-23 05:47:18 | 显示全部楼层
,Optimization—Basic Ideas and Formulation,ace bound of Thorup and Zwick..It is not known, however, whether graph sparsity can help to get a stretch which is better than . using only . space. In this paper we answer this open question and prove a separation between sparse and dense graphs by showing that using sparsity it is possible to obta
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 13:37
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表