找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2022; 17th European Confer Shai Avidan,Gabriel Brostow,Tal Hassner Conference proceedings 2022 The Editor(s) (if app

[复制链接]
楼主: relapse
发表于 2025-4-1 05:39:12 | 显示全部楼层
发表于 2025-4-1 09:08:15 | 显示全部楼层
发表于 2025-4-1 10:14:13 | 显示全部楼层
-means Mask Transformer, as a clustering process. Inspired by the traditional .-means clustering algorithm, we develop a .-means .sk .former (.MaX-DeepLab) for segmentation tasks, which not only improves the state-of-the-art, but also enjoys a simple and elegant design. As a result, our .MaX-DeepLab achieves a new state-of
发表于 2025-4-1 16:22:25 | 显示全部楼层
,SegPGD: An Effective and Efficient Adversarial Attack for Evaluating and Boosting Segmentation Robuk, we propose an effective and efficient segmentation attack method, dubbed SegPGD. Besides, we provide a convergence analysis to show the proposed SegPGD can create more effective adversarial examples than PGD under the same number of attack iterations. Furthermore, we propose to apply our SegPGD a
发表于 2025-4-1 21:45:25 | 显示全部楼层
,Adversarial Erasing Framework via Triplet with Gated Pyramid Pooling Layer for Weakly Supervised Sethey usually suffer from the over-expansion due to an absence of guidelines on when to stop erasing. We experimentally verify that the over-expansion is due to rigid classification, and metric learning can be a flexible remedy for it. AEFT is devised to learn the concept of erasing with the triplet
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 03:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表