找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ECCV 2020 Workshops; Glasgow, UK, August Adrien Bartoli,Andrea Fusiello Conference proceedings 2020 Springer Nature Swit

[复制链接]
查看: 40623|回复: 57
发表于 2025-3-21 19:27:40 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ECCV 2020 Workshops
副标题Glasgow, UK, August
编辑Adrien Bartoli,Andrea Fusiello
视频video
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ECCV 2020 Workshops; Glasgow, UK, August  Adrien Bartoli,Andrea Fusiello Conference proceedings 2020 Springer Nature Swit
描述.The 6-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic...The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics..Part I focusses on adversarial robustness in the real world; bioimage computation; egocentric perception, interaction and computing; eye gaze in VR, AR, and in the wild; TASK-CV workshop and VisDA challenge; and bodily expressed emotion understanding..
出版日期Conference proceedings 2020
关键词computer networks; computer vision; data security; databases; education; face recognition; image analysis;
版次1
doihttps://doi.org/10.1007/978-3-030-66415-2
isbn_softcover978-3-030-66414-5
isbn_ebook978-3-030-66415-2Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Computer Vision – ECCV 2020 Workshops影响因子(影响力)




书目名称Computer Vision – ECCV 2020 Workshops影响因子(影响力)学科排名




书目名称Computer Vision – ECCV 2020 Workshops网络公开度




书目名称Computer Vision – ECCV 2020 Workshops网络公开度学科排名




书目名称Computer Vision – ECCV 2020 Workshops被引频次




书目名称Computer Vision – ECCV 2020 Workshops被引频次学科排名




书目名称Computer Vision – ECCV 2020 Workshops年度引用




书目名称Computer Vision – ECCV 2020 Workshops年度引用学科排名




书目名称Computer Vision – ECCV 2020 Workshops读者反馈




书目名称Computer Vision – ECCV 2020 Workshops读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:34:14 | 显示全部楼层
发表于 2025-3-22 04:25:20 | 显示全部楼层
Deep ,-NN Defense Against Clean-Label Data Poisoning Attacks of . as well as for implementing the Deep .-NN defense on real-world datasets with class imbalance. Our proposed defense shows that current clean-label poisoning attack strategies can be annulled, and serves as a strong yet simple-to-implement baseline defense to test future clean-label poisoning a
发表于 2025-3-22 05:59:35 | 显示全部楼层
发表于 2025-3-22 11:37:21 | 显示全部楼层
Jacks of All Trades, Masters of None: Addressing Distributional Shift and Obtrusiveness via Transpar findings, we then focus on addressing how to overcome the principal limitations of scale for the deployment of attacks in real physical settings: namely the obtrusiveness of large patches. Our strategy is to turn to the novel design of irregularly-shaped, semi-transparent partial patches which we c
发表于 2025-3-22 16:34:35 | 显示全部楼层
发表于 2025-3-22 19:27:11 | 显示全部楼层
Robust Super-Resolution of Real Faces Using Smooth Featuresdation GAN to convert bicubically downsampled clean images to real degraded images, and interpolate between the obtained degraded LR image and its clean LR counterpart. This interpolated LR image is then used along with it’s corresponding HR counterpart to train the super-resolution network from end
发表于 2025-3-22 22:19:53 | 显示全部楼层
发表于 2025-3-23 03:54:33 | 显示全部楼层
发表于 2025-3-23 09:16:54 | 显示全部楼层
The Economics of Counterfeit Tradenetwork architectures. We show through extensive experimentation that several networks, while trained on the same dataset and enjoying comparable accuracy, do not necessarily perform similarly in semantic robustness. For example, InceptionV3 is more accurate despite being less semantically robust th
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-22 09:53
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表