找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision – ACCV 2016 Workshops; ACCV 2016 Internatio Chu-Song Chen,Jiwen Lu,Kai-Kuang Ma Conference proceedings 2017 Springer Intern

[复制链接]
查看: 43241|回复: 60
发表于 2025-3-21 19:51:55 | 显示全部楼层 |阅读模式
书目名称Computer Vision – ACCV 2016 Workshops
副标题ACCV 2016 Internatio
编辑Chu-Song Chen,Jiwen Lu,Kai-Kuang Ma
视频video
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision – ACCV 2016 Workshops; ACCV 2016 Internatio Chu-Song Chen,Jiwen Lu,Kai-Kuang Ma Conference proceedings 2017 Springer Intern
描述The three-volume set, consisting of LNCS 10116, 10117, and 10118, contains carefully reviewed and selected papers presented at 17 workshops held in conjunction with the 13th Asian Conference on Computer Vision, ACCV 2016, in Taipei, Taiwan in November 2016. The 134 full papers presented were selected from 223 submissions. LNCS 10116 contains the papers selected 
出版日期Conference proceedings 2017
关键词classification; human-machine interaction; image processing; neural network; reinforcement learning
版次1
doihttps://doi.org/10.1007/978-3-319-54407-6
isbn_softcover978-3-319-54406-9
isbn_ebook978-3-319-54407-6Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Computer Vision – ACCV 2016 Workshops影响因子(影响力)




书目名称Computer Vision – ACCV 2016 Workshops影响因子(影响力)学科排名




书目名称Computer Vision – ACCV 2016 Workshops网络公开度




书目名称Computer Vision – ACCV 2016 Workshops网络公开度学科排名




书目名称Computer Vision – ACCV 2016 Workshops被引频次




书目名称Computer Vision – ACCV 2016 Workshops被引频次学科排名




书目名称Computer Vision – ACCV 2016 Workshops年度引用




书目名称Computer Vision – ACCV 2016 Workshops年度引用学科排名




书目名称Computer Vision – ACCV 2016 Workshops读者反馈




书目名称Computer Vision – ACCV 2016 Workshops读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:09:52 | 显示全部楼层
Brandon J. Sumpio,Aristidis Vevesvision pipeline is suitable for home monitoring in a controlled environment, with calorific expenditure estimates above accuracy levels of commonly used manual estimations via METs. With the dataset released, our work establishes a baseline for future research for this little-explored area of comput
发表于 2025-3-22 01:08:48 | 显示全部楼层
发表于 2025-3-22 08:24:51 | 显示全部楼层
发表于 2025-3-22 10:09:34 | 显示全部楼层
Edwin B. Fisher,Paul Bloch,William Sherlaw to 0.74 dB over the second-best method. Moreover, experiments on the COFW dataset and a number of real-world images show that the proposed method successfully restores occluded facial regions in the wild even for CCTV quality images.
发表于 2025-3-22 16:58:50 | 显示全部楼层
发表于 2025-3-22 17:04:41 | 显示全部楼层
Genetic Determinants of Type 2 Diabeteservention and prior data training. Due to the large variability in the feature values, we assigned the fuzzy membership to these features instead of hard thresholding to reduce classification errors. Simulation carried out with available dataset, show that smoke is accurately localized both in time and space via proposed approach.
发表于 2025-3-22 22:39:55 | 显示全部楼层
Cameron M. Akbari MD, MBA, FACS adaptive parameters to address these problems. We generalize key features that affect SR methods’ applicability of implementation on hardware and show NLM is fit for hardware implementation. The experimental results validate the proposed algorithm.
发表于 2025-3-23 03:37:00 | 显示全部楼层
Thanh Dinh DPM,Aristidis Veves MD, DScce. Then, a self-adaptive .-Laplace variation function is used as the regularization operator while the regularization parameter is adaptively obtained via a barrier function. Finally, experimental results demonstrate the superiority of the proposed method in suppressing noise and preserving fine details.
发表于 2025-3-23 08:37:55 | 显示全部楼层
Model and Dictionary Guided Face Inpainting in the Wild to 0.74 dB over the second-best method. Moreover, experiments on the COFW dataset and a number of real-world images show that the proposed method successfully restores occluded facial regions in the wild even for CCTV quality images.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-4 17:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表