找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computer Vision and Graphics; International Confer Leszek J. Chmielewski,Amitava Datta,Konrad Wojciec Conference proceedings 2016 Springer

[复制链接]
查看: 49860|回复: 57
发表于 2025-3-21 18:12:32 | 显示全部楼层 |阅读模式
书目名称Computer Vision and Graphics
副标题International Confer
编辑Leszek J. Chmielewski,Amitava Datta,Konrad Wojciec
视频videohttp://file.papertrans.cn/235/234053/234053.mp4
概述Includes supplementary material:
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computer Vision and Graphics; International Confer Leszek J. Chmielewski,Amitava Datta,Konrad Wojciec Conference proceedings 2016 Springer
描述.This book constitutes the refereed proceedings of the International Conference on Computer Vision and Graphic, ICCVG 2016, held in Warsaw, Poland, in September 2016. The 68 full papers presented were carefully reviewed and selected from various submissions. They show various opportunities for valuable research at the border of applied information sciences, agribusiness, veterinary medicine and the broadly understood domains of biology and economy. .
出版日期Conference proceedings 2016
关键词3D imaging; biometrics; image processing; object recognition; pattern recognition; artificial neural netw
版次1
doihttps://doi.org/10.1007/978-3-319-46418-3
isbn_softcover978-3-319-46417-6
isbn_ebook978-3-319-46418-3Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer International Publishing AG 2016
The information of publication is updating

书目名称Computer Vision and Graphics影响因子(影响力)




书目名称Computer Vision and Graphics影响因子(影响力)学科排名




书目名称Computer Vision and Graphics网络公开度




书目名称Computer Vision and Graphics网络公开度学科排名




书目名称Computer Vision and Graphics被引频次




书目名称Computer Vision and Graphics被引频次学科排名




书目名称Computer Vision and Graphics年度引用




书目名称Computer Vision and Graphics年度引用学科排名




书目名称Computer Vision and Graphics读者反馈




书目名称Computer Vision and Graphics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:40:36 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-7310-4e in the detection between the maps created by humans and computed by SSIM. The results of the cross-validation performed on a large collection of examples revealed that AUC (area under curve) in the receiver-operator analysis can be improved from 0.92 for default SSIM parameters to 0.97 for optimis
发表于 2025-3-22 04:27:44 | 显示全部楼层
发表于 2025-3-22 08:37:47 | 显示全部楼层
Single Image Haze Removal Using Single Pixel Approach Based on Dark Channel Prior with Fast FilterinSM is the main reason for the slowness of DCP. The proposed algorithm is faster than existing methods, but achieves similar dehazing. This new method is useful for applications that require fast dehazing.
发表于 2025-3-22 09:40:23 | 显示全部楼层
发表于 2025-3-22 13:38:57 | 显示全部楼层
RMagick: ImageMagick Programming with Ruby,to reduce the database size and made the subjective experiments less expensive and therefore more usable. To achieve it we employ a clustering technique and human visual system based objective metrics.
发表于 2025-3-22 20:43:36 | 显示全部楼层
发表于 2025-3-23 00:26:17 | 显示全部楼层
The Definitive Guide to JasperReportsis paper is to present a comparative analysis of several methods (finite differences, interpolation, operators and regularization), that have been developed for numerical differentiation. Numerical results are presented for artificial and real data sets.
发表于 2025-3-23 03:47:53 | 显示全部楼层
Perceptual Experiments Optimisation by Initial Database Reductionto reduce the database size and made the subjective experiments less expensive and therefore more usable. To achieve it we employ a clustering technique and human visual system based objective metrics.
发表于 2025-3-23 08:40:00 | 显示全部楼层
Anisotropic Diffusion for Smoothing: A Comparative Study of this paper is to present a comparative study of three methods that have been used for smoothing using anisotropic diffusion techniques. These methods have been compared using the root mean square error (RMSE) and the Nash-Sutcliffe error. Numerical results are presented for both artificial data and real data.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-11-16 13:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表