找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Visual Media; First International Shi-Min Hu,Ralph R. Martin Conference proceedings 2012 Springer-Verlag Berlin Heidelberg 2

[复制链接]
楼主: MASS
发表于 2025-4-1 03:01:08 | 显示全部楼层
发表于 2025-4-1 07:57:50 | 显示全部楼层
发表于 2025-4-1 12:25:41 | 显示全部楼层
发表于 2025-4-1 15:13:00 | 显示全部楼层
https://doi.org/10.1007/BFb0070306 related information hidden in different labels which is crucial for lots of applications, it is essential to extract a latent structure shared among different labels. This paper presents an incremental approach for extracting a shared subspace on dynamic dataset. With the incremental lossless matri
发表于 2025-4-1 18:28:37 | 显示全部楼层
Decomposition of the dirichlet form,logical research that line drawings trigger a neural response similar to natural color images, and propose a line-drawing-based 3D object recognition method. The contribution of the proposed method includes a feature defined for line drawings and a similarity metric for object recognition. Experimen
发表于 2025-4-2 00:19:40 | 显示全部楼层
Computational Visual Media978-3-642-34263-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
发表于 2025-4-2 06:07:19 | 显示全部楼层
发表于 2025-4-2 07:59:47 | 显示全部楼层
A Novel Customized Recompression Framework for Massive Internet Imagesto improve user experience and save costs as much as possible, a lot of internet applications always focus on how to achieve the appropriate image recompression. In this paper, we propose a novel framework to efficiently customize image recompression according to a variety of applications. And our n
发表于 2025-4-2 11:16:11 | 显示全部楼层
发表于 2025-4-2 16:22:28 | 显示全部楼层
Intrinsic Image Decomposition with Local Smooth Assumption and Global Color Assumptionuse the problem is extremely ill-posed. Smooth assumption is widely used in many methods, but pixels in plain areas and in edge areas are not well distinguished. We improve this assumption by adding a weight to every pixel in the image so that the smoothness is measured accordingly. There are always
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-26 06:33
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表