找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Neuroscience; First Latin American Dante Augusto Couto Barone,Eduardo Oliveira Teles, Conference proceedings 2017 Springer In

[复制链接]
楼主: TIBIA
发表于 2025-3-25 06:43:39 | 显示全部楼层
Towards Graffiti Classification in Weakly Labeled Images Using Convolutional Neural Networks architecture pre-trained on the ImageNet dataset and show a novel approach to fine-tuning the network over graffiti examples extracted from Flickr. Experiments using this approach show accuracy comparable to that of ImageNet classes.
发表于 2025-3-25 10:05:59 | 显示全部楼层
发表于 2025-3-25 12:44:28 | 显示全部楼层
发表于 2025-3-25 16:08:24 | 显示全部楼层
1865-0929 ected from 40 submissions. The papers are organized in topical sections: neural networks; artificial intelligence; computer vision; machine learning; graphic systems and interfaces; decision trees; nonlinear equations; nano-electromechanical systems. . ..978-3-319-71010-5978-3-319-71011-2Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-25 23:05:50 | 显示全部楼层
发表于 2025-3-26 02:14:26 | 显示全部楼层
发表于 2025-3-26 05:13:49 | 显示全部楼层
发表于 2025-3-26 10:55:04 | 显示全部楼层
Chaotic Synchronization of Neural Networks in FPGAy (FPGA) simulating in real-time a Natural Neural Networks (NNN). This work is motivated by research in Neurosciences involving the implantation of chips between the skull and the brain to prevent or ameliorate diseases such as Parkinson’s, Epilepsy and Depression. Our contribution is the introducti
发表于 2025-3-26 14:15:27 | 显示全部楼层
发表于 2025-3-26 20:22:58 | 显示全部楼层
Towards Graffiti Classification in Weakly Labeled Images Using Convolutional Neural Networksdentifying this urban writings can be useful for understanding cities and their communities. In this paper we investigate the use of Convolutional Neural Networks aiming at classifying weakly labeled images to identify the presence or absence of graffiti art in images. We propose the use of a VGG-16
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-16 19:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表