找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Intelligence in Recent Communication Networks; Mariya Ouaissa,Zakaria Boulouard,Bassma Guermah Book 2022 The Editor(s) (if a

[复制链接]
楼主: Grievous
发表于 2025-3-25 04:37:51 | 显示全部楼层
发表于 2025-3-25 10:35:48 | 显示全部楼层
PDDL Planning and Ontologies, a Tool for Automatic Composition of Intentional-Contextual Web Servicomposition Architecture (CISCA) for implementing this approach. In the same way, we will present an AI planning technique to solve a composition problem, namely, the Planning Domain Description Language (PDDL) and the basis for reciprocal transformation with the Web Ontology Language (OWL).
发表于 2025-3-25 12:16:08 | 显示全部楼层
QSAR Anti-HIV Feature Selection and Prediction for Drug Discovery Using Genetic Algorithm and Machin parameters sensibility is equal to 0.99, specificity is equal to 0.91, and accuracy is equal to 0.98. These results reveal the capacity for achieving data subset of molecular descriptors, with high predictive capacity as well as the effectiveness and robustness of the proposed approach.
发表于 2025-3-25 16:30:19 | 显示全部楼层
发表于 2025-3-25 20:44:45 | 显示全部楼层
发表于 2025-3-26 03:35:56 | 显示全部楼层
Das Grundkonzept der Marktzinsmethode project, we aim to examine the performance of two advanced neural network models, namely, convolutional neural networks and recurrent neural networks, and choose the most suitable one in terms of resistance and effectiveness for this particular application. This paper presents the simulations carried out and the results obtained.
发表于 2025-3-26 05:22:51 | 显示全部楼层
Traffic Sign Detection: A Comparative Study Between CNN and RNN, project, we aim to examine the performance of two advanced neural network models, namely, convolutional neural networks and recurrent neural networks, and choose the most suitable one in terms of resistance and effectiveness for this particular application. This paper presents the simulations carried out and the results obtained.
发表于 2025-3-26 09:49:18 | 显示全部楼层
发表于 2025-3-26 14:06:56 | 显示全部楼层
https://doi.org/10.1007/978-3-658-45422-7stigate the use of Deep Q-Learning to optimize vehicle time loss. Finally, we discuss deeply the performance of our proposed DRL-based solution compared to similar traditional programming-based systems.
发表于 2025-3-26 17:22:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-30 19:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表