找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Intelligence Methods for Bioinformatics and Biostatistics; 6th International Me Francesco Masulli,Leif E. Peterson,Roberto Ta

[复制链接]
查看: 16667|回复: 61
发表于 2025-3-21 18:18:17 | 显示全部楼层 |阅读模式
书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics
副标题6th International Me
编辑Francesco Masulli,Leif E. Peterson,Roberto Tagliaf
视频video
概述Unique visibility, state-of-the-art survey,.fast-track conference proceedings
丛书名称Lecture Notes in Computer Science
图书封面Titlebook: Computational Intelligence Methods for Bioinformatics and Biostatistics; 6th International Me Francesco Masulli,Leif E. Peterson,Roberto Ta
出版日期Conference proceedings 2010
关键词LA; Simulation; algorithms; bioinformatics; classification; ecolutionary information; game theory; gene cha
版次1
doihttps://doi.org/10.1007/978-3-642-14571-1
isbn_softcover978-3-642-14570-4
isbn_ebook978-3-642-14571-1Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer-Verlag Berlin Heidelberg 2010
The information of publication is updating

书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics影响因子(影响力)




书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics影响因子(影响力)学科排名




书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics网络公开度




书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics网络公开度学科排名




书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics被引频次




书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics被引频次学科排名




书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics年度引用




书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics年度引用学科排名




书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics读者反馈




书目名称Computational Intelligence Methods for Bioinformatics and Biostatistics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:34:31 | 显示全部楼层
https://doi.org/10.1007/978-3-476-99314-4genetic algorithms is not new, the presented approach differs in the representation of the multiple alignment and in the simplicity of the genetic operators. The results so far obtained are reported and discussed in this paper.
发表于 2025-3-22 00:43:50 | 显示全部楼层
发表于 2025-3-22 06:34:33 | 显示全部楼层
发表于 2025-3-22 09:27:45 | 显示全部楼层
,Kurzlösungen zu den Übungsaufgaben,nsional matrix, SVD may be very expensive in terms of computational time. We propose to reduce the SVD task to the ordinary maximisation problem with an Euclidean norm which may be solved easily using gradient-based optimisation. We demonstrate the effectiveness of this approach to the supervised classification of gene expression data.
发表于 2025-3-22 13:08:12 | 显示全部楼层
发表于 2025-3-22 17:18:52 | 显示全部楼层
Penalized Principal Component Analysis of Microarray Datansional matrix, SVD may be very expensive in terms of computational time. We propose to reduce the SVD task to the ordinary maximisation problem with an Euclidean norm which may be solved easily using gradient-based optimisation. We demonstrate the effectiveness of this approach to the supervised classification of gene expression data.
发表于 2025-3-22 23:37:44 | 显示全部楼层
Searching a Multivariate Partition Space Using MAX-SATthis method can be used to fully search the space of partitions in smaller problems and how it can be used to enhance the performance of more familiar algorithms in large problems. We illustrate our method on clustering of time-course microarray experiments.
发表于 2025-3-23 02:54:28 | 显示全部楼层
Andreas Kurtenbach,Andreas Kreino simulate a model of the studied biological system but also to deduce the sets of parameter values that lead to a behaviour compatible with the biological knowledge (or hypotheses) about dynamics. This approach is based on formal logic. It is illustrated in the discrete modelling framework of genetic regulatory networks due to René Thomas.
发表于 2025-3-23 08:07:39 | 显示全部楼层
Kleineinzugsgebiete im Mittelgebirgeclassification algorithm to the classes of interacting and noninteracting proteins. Results show that it is possible to achieve high prediction accuracy in cross validation. A case study is analyzed to show it is possible to reconstruct a real network of thousands interacting proteins with high accuracy on standard hardware.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 10:12
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表