找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Geometry and Graphs; Thailand-Japan Joint Jin Akiyama,Mikio Kano,Toshinori Sakai Conference proceedings 2013 Springer-Verlag

[复制链接]
楼主: 导弹
发表于 2025-3-25 05:15:24 | 显示全部楼层
发表于 2025-3-25 10:28:15 | 显示全部楼层
Stochastic Games and Related Conceptsrov, we show that there is no .-universal point set of size ., for any . ≥ 15. Conversely, we use a computer program to show that there exist universal point sets for all . ≤ 10 and to enumerate all corresponding order types. Finally, we describe a collection . of 7′393 planar graphs on 35 vertices
发表于 2025-3-25 15:38:10 | 显示全部楼层
发表于 2025-3-25 18:41:28 | 显示全部楼层
发表于 2025-3-25 22:45:15 | 显示全部楼层
Jean-François Coeurjolly,Frédéric Lavancierse games, each player colors one specified cell in his/her turn, and all connected neighbor cells of the same color are also colored by the color. This flooding or coloring spreads on the same color cells. It is natural to consider the coloring games on general graphs: Once a vertex is colored, the
发表于 2025-3-26 03:59:27 | 显示全部楼层
发表于 2025-3-26 06:41:08 | 显示全部楼层
https://doi.org/10.1007/3-540-38174-0instra proved that if a connected graph . satisfies . .(.) ≥ |.| − . + 1 for an integer . ≥ 2, then . has a spanning tree having at most . leaves. In this paper we improve this result as follows. If a connected graph . satisfies . .(.) ≥ |.| − . + 1 and |.| ≥ 3. − 10 for an integer . ≥ 2, then . has
发表于 2025-3-26 12:10:24 | 显示全部楼层
发表于 2025-3-26 13:40:30 | 显示全部楼层
发表于 2025-3-26 17:50:47 | 显示全部楼层
https://doi.org/10.1007/3-540-38174-0ength diam(.), whose every vertex belongs to ., is .. We prove this statement under the condition that any two of the simplices share at least . − 2 vertices. It is left as an open question to decide whether this condition is always satisfied. We also establish upper bounds on the number of all 2- a
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-4 08:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表