找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Fluid Dynamics; Finite Difference Me Guoxiang Hou,Caikan Chen,Kai Wang Book 2024 The Editor(s) (if applicable) and The Author

[复制链接]
查看: 14132|回复: 48
发表于 2025-3-21 16:56:11 | 显示全部楼层 |阅读模式
书目名称Computational Fluid Dynamics
副标题Finite Difference Me
编辑Guoxiang Hou,Caikan Chen,Kai Wang
视频video
概述Details the operator transformation method in difference methods which is a unique one.Introduces several newly developing methods based on the Lattice Boltzmann Method in the second part of this book
丛书名称Engineering Applications of Computational Methods
图书封面Titlebook: Computational Fluid Dynamics; Finite Difference Me Guoxiang Hou,Caikan Chen,Kai Wang Book 2024 The Editor(s) (if applicable) and The Author
描述.This book provides a concise and comprehensive introduction to several basic methods with more attention to their theoretical basis and applications in fluid dynamics. Furthermore, some new ideas are presented in this book, for example, a method to solve the transition matrix by difference operator transformation. For this method, the book gives the definition of Fourier integral transformation of translation operator, and proves the transition matrix equaling to the differential operator transformation, so that it is extended to general situations of explicit, implicit, multi-layer difference equations, etc. This flexible approach is also used in the differential part. In addition, the book also includes six types of equivalent stability definitions in two ways and deeply analyzes their errors, stabilities and convergences of the difference equations. What is more important, some new scientific contributions on lattice Boltzmann method (LBM) in recent years are presented in the book as well. The authors write the book combining their ten years teaching experience and research results and this book is intended for graduate students who are interested in the area of computational f
出版日期Book 2024
关键词Computational Fluid Dynamics; Finite Difference Method; Lattice Boltzmann Method; Incompressible Flows;
版次1
doihttps://doi.org/10.1007/978-981-97-0349-4
isbn_softcover978-981-97-0351-7
isbn_ebook978-981-97-0349-4Series ISSN 2662-3366 Series E-ISSN 2662-3374
issn_series 2662-3366
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

书目名称Computational Fluid Dynamics影响因子(影响力)




书目名称Computational Fluid Dynamics影响因子(影响力)学科排名




书目名称Computational Fluid Dynamics网络公开度




书目名称Computational Fluid Dynamics网络公开度学科排名




书目名称Computational Fluid Dynamics被引频次




书目名称Computational Fluid Dynamics被引频次学科排名




书目名称Computational Fluid Dynamics年度引用




书目名称Computational Fluid Dynamics年度引用学科排名




书目名称Computational Fluid Dynamics读者反馈




书目名称Computational Fluid Dynamics读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:02:44 | 显示全部楼层
Therapie: Methoden und Konzeption,thods for constructing difference schemes are introduced, including Taylor series expansion, method of polynomial interpolation, being-determined coefficient method, integral methods, method of characteristics, and control volume method. We provide an example of a one-dimensional advection equation
发表于 2025-3-22 04:04:02 | 显示全部楼层
发表于 2025-3-22 08:27:48 | 显示全部楼层
发表于 2025-3-22 10:13:57 | 显示全部楼层
发表于 2025-3-22 14:43:08 | 显示全部楼层
Therapie: Methoden und Konzeption,he variable coefficients in linear partial differential equations, if the coefficients of the equation are smooth functions, similar methods to the constant coefficient case can be used to construct difference schemes. The stability and convergence can be analyzed using the frozen coefficient method
发表于 2025-3-22 19:37:33 | 显示全部楼层
发表于 2025-3-23 00:09:25 | 显示全部楼层
发表于 2025-3-23 04:22:17 | 显示全部楼层
发表于 2025-3-23 09:28:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-27 21:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表