找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Conformal Mapping; Prem K. Kythe Book 1998 Springer Science+Business Media New York 1998 Applied Mathematics.Approximation.C

[复制链接]
楼主: 无法修复
发表于 2025-3-25 03:50:52 | 显示全部楼层
Running the Observatory: The Directors,polygon, it becomes necessary to determine approximately the (2n + 2) parameters a.,…, a., x.,…, .., and the constants . and . that appear in the Schwarz—Christoffel formula (2.3.1). Evaluation of these quantities is known as the parameter problem. We have seen in case studies in §2.3 that the mappi
发表于 2025-3-25 09:40:58 | 显示全部楼层
Uta Berghöfer,Augustin Berghöfersimply connected region onto a disk, and the second with that of the boundary of the region onto the circumference of the disk. Both problems use the Ritz method for approximating the minimal mapping function by polynomials. This mapping function in the first problem is represented in terms of the B
发表于 2025-3-25 12:37:15 | 显示全部楼层
发表于 2025-3-25 17:15:39 | 显示全部楼层
发表于 2025-3-25 21:21:52 | 显示全部楼层
Environmental Science and Engineeringdary Γ and containing the origin, conformally onto the interior or exterior of the unit circle 1w 1 = 1. In the case when Γ is a Jordan contour, we obtain Fredholm integral equations of the second kind . where . known as the boundary correspondence function, is to be determined and ., . is the Neuma
发表于 2025-3-26 01:41:38 | 显示全部楼层
发表于 2025-3-26 07:53:33 | 显示全部楼层
发表于 2025-3-26 10:46:31 | 显示全部楼层
发表于 2025-3-26 13:59:39 | 显示全部楼层
https://doi.org/10.1007/978-3-030-47519-2inite need for a simple yet accurate method for mapping a general doubly connected region onto a circular annulus. According to Kantorovich and Krylov (1958, p. 362) the problem of finding the conformal modulus is ‘one of the difficult problems of the theory of conformal transformation’. As such, an
发表于 2025-3-26 19:33:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 12:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表