找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computational Complexity and Property Testing; On the Interplay Bet Oded Goldreich Book 2020 Springer Nature Switzerland AG 2020 artificial

[复制链接]
楼主: foresight
发表于 2025-3-25 05:32:55 | 显示全部楼层
,On (Valiant’s) Polynomial-Size Monotone Formula for Majority,ant’s proof (., 1984), but deviates from it in the actual implementation. Specifically, we show that, with high probability, a full ternary tree of depth . computes the majority of . values when each leaf of the tree is assigned at random one of the . values.
发表于 2025-3-25 09:17:04 | 显示全部楼层
On the Effect of the Proximity Parameter on Property Testers,ical cases, the effect of the proximity parameter is restricted to determining the query complexity of the tester. The point is that, in non-pathological cases, the mapping of the proximity parameter to the query complexity can be reversed in an adequate sense.
发表于 2025-3-25 13:56:04 | 显示全部楼层
发表于 2025-3-25 19:03:21 | 显示全部楼层
,Europäisches Regelwerk für den Betonbau,PPs). This extension is based on a corresponding extension of the gap amplification theorem from PCPs to Assignment Testers (a.k.a PCPPs). Specifically, the latter extension states that the rejection probability of an Assignment Tester can be amplified by a constant factor, at the expense of increas
发表于 2025-3-25 22:42:11 | 显示全部楼层
https://doi.org/10.1007/978-3-662-10008-0ant’s proof (., 1984), but deviates from it in the actual implementation. Specifically, we show that, with high probability, a full ternary tree of depth . computes the majority of . values when each leaf of the tree is assigned at random one of the . values.
发表于 2025-3-26 01:56:44 | 显示全部楼层
https://doi.org/10.1007/978-3-0348-5365-1 The original notion was derived (as a variant of the standard notion of a canonical derandomizer) by providing both the distinguisher and the generator with the same auxiliary-input. Here we take one step further and consider pseudorandom generators that fool a single circuit that is given to both
发表于 2025-3-26 06:58:25 | 显示全部楼层
发表于 2025-3-26 09:47:45 | 显示全部楼层
发表于 2025-3-26 13:28:07 | 显示全部楼层
发表于 2025-3-26 18:54:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-13 12:40
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表