找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Computation Theory; Fifth Symposium, Zab Andrzej Skowron Conference proceedings 1985 Springer-Verlag Berlin Heidelberg 1985 Computation.Erf

[复制链接]
楼主: BROOD
发表于 2025-3-26 21:55:17 | 显示全部楼层
Some results on decision trees with relations to computational trees,egree..We introduced the notion of functions r-distant to R.[x] and have shown how starting from decision trees we can derive lower bounds in the model of computation trees. This relation suggests an uniform approach to lower bound proving in decision and computational tree models.
发表于 2025-3-27 01:41:12 | 显示全部楼层
发表于 2025-3-27 05:58:15 | 显示全部楼层
发表于 2025-3-27 11:19:32 | 显示全部楼层
发表于 2025-3-27 15:53:32 | 显示全部楼层
David Wainwright,Elaine Wainwrightring languages. By means of this automaton the complexity classes of array languages are defined. For 2-dimension array languages a generalization of log-space reducibility relation is introduced so that every language which is NL-complete is also complete for the class of array languages accepted b
发表于 2025-3-27 18:14:00 | 显示全部楼层
https://doi.org/10.1007/978-3-030-05876-0etical interpretations, i.e. the following condition holds: "there exists a unary relation symbol nat such that for every arithmetical interpretation I, nat. is the set of natural numbers". It is proved that the completeness is lost when this condition is relaxed to the following one: "for every int
发表于 2025-3-27 22:40:14 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-3114-8egree..We introduced the notion of functions r-distant to R.[x] and have shown how starting from decision trees we can derive lower bounds in the model of computation trees. This relation suggests an uniform approach to lower bound proving in decision and computational tree models.
发表于 2025-3-28 04:15:20 | 显示全部楼层
发表于 2025-3-28 07:07:03 | 显示全部楼层
Ivor H. Mills Ph.D. M.D., F.R.C.P. that a path of a run is accepting /rejecting if for some i even/ odd, 1≤i≤2I-1, the s. appears infinitely often, and all s., j
发表于 2025-3-28 12:10:19 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-11-16 05:26
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表