找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex, Intelligent and Software Intensive Systems; Proceedings of the 1 Leonard Barolli Conference proceedings 2022 The Editor(s) (if app

[复制链接]
楼主: Clinical-Trial
发表于 2025-3-25 03:48:01 | 显示全部楼层
,Unnecessary Maneuvers as a Determinant of Driver Impatience in VANETs: Implementation and Evaluatioaneuvers that drivers make while driving as an additional input. We show through simulations the effect that the unnecessary maneuvers and the other parameters have on the determination of the driver’s impatience and demonstrate some actions that can be performed when the driver shows high degrees of impatience.
发表于 2025-3-25 08:42:32 | 显示全部楼层
,A Fast Convergence RDVM for Router Placement in WMNs: Performance Comparison of FC-RDVM with RDVM btional Decrement of Vmax Method (RDVM). In this paper, we propose and implement a Fast Convergence RDVM (FC-RDVM). We compare the performance of FC-RDVM with RDVM. Simulation results show that FC-RDVM has better performance than RDVM.
发表于 2025-3-25 13:52:40 | 显示全部楼层
Examination of Robot System Detecting Smoke Condition in the Event of a Fire,tereo camera identifies the smoke, obtains the three-dimensional coordinates of the smoke, and ascertains whether the smoke height affects the evacuation. We show the effectiveness of proposed system thorough some experiments.
发表于 2025-3-25 16:14:31 | 显示全部楼层
发表于 2025-3-25 22:48:26 | 显示全部楼层
发表于 2025-3-26 02:02:03 | 显示全部楼层
发表于 2025-3-26 06:21:05 | 显示全部楼层
https://doi.org/10.1007/978-3-030-61698-4esh routers in WMNs. For the simulations, we consider the evacuation areas in Okayama City, Japan, as the target to be covered by mesh routers. From the simulation results, we found that the proposed method was able to cover the evacuation area. The proposed method also reduced the number of mesh ro
发表于 2025-3-26 11:14:49 | 显示全部楼层
发表于 2025-3-26 15:41:12 | 显示全部楼层
发表于 2025-3-26 17:56:41 | 显示全部楼层
Second Order Linear State Models,2 provides the highest classification performance when taking the lead in all three metrics of ACC, AUC, and MCC with 0.77, 0.804, and 0.619, respectively. The results also show that data augmentation techniques can improve the efficiency of the classification algorithms on the ultrasound image data
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-3 21:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表