找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Complex, Contact and Symmetric Manifolds; In Honor of L. Vanhe Oldřich Kowalski,Emilio Musso,Domenico Perrone Book 2005 Birkhäuser Boston 2

[复制链接]
楼主: iniquity
发表于 2025-3-25 03:37:47 | 显示全部楼层
发表于 2025-3-25 10:51:07 | 显示全部楼层
发表于 2025-3-25 15:31:51 | 显示全部楼层
发表于 2025-3-25 17:55:09 | 显示全部楼层
Notes on the Goldberg Conjecture in Dimension Four,where the scalar curvature is non-negative. However, the conjecture is still open in the remaining case. In this note, we shall give a brief survey on the recent progress concerning the conjecture in four-dimensional case.
发表于 2025-3-25 23:14:26 | 显示全部楼层
German Practice in State Energy Transition,n the words of R. Osserman, “curvature is . central concept (in differential geometry and, more in particular, in Riemannian geometry), distinguishing the geometrical core of the subject from those aspects that are analytic, algebraic or topological”. The reason for this can be seen as follows:. The
发表于 2025-3-26 02:54:17 | 显示全部楼层
https://doi.org/10.1007/978-3-319-16417-5h are solutions of a general version of the equations of topological-anti a topological fusion considered by Cecotti–Vafa, Dubrovin and Hertling. Then we give a simple characterization of the tangent bundles of special complex and special Kähler manifolds as particular types of tt*-bundles. We illus
发表于 2025-3-26 04:57:56 | 显示全部楼层
https://doi.org/10.1007/978-3-662-48708-2ently, on these manifolds there exists an almost contact structure (.) naturally induced from the ambient space. In this paper, we study a certain commutative condition on the almost contact structure and on the second fundamental form of these submanifolds.
发表于 2025-3-26 12:14:38 | 显示全部楼层
发表于 2025-3-26 15:05:56 | 显示全部楼层
https://doi.org/10.1007/978-3-662-48708-2sify locally all Riemannian 3-manifolds with prescribed distinct Ricci eigenvalues, which can be given as arbitrary real analytic functions. In Section 3 we recall, for the . distinct Ricci eigenvalues, an explicit solution of the problem, but in a more compact form than it was presented in [.]. Fin
发表于 2025-3-26 19:34:07 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-5 10:00
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表