找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Completeness Theorems and Characteristic Matrix Functions; Applications to Inte Marinus A. Kaashoek,Sjoerd M. Verduyn Lunel Book 2022 The E

[复制链接]
楼主: 遮蔽
发表于 2025-3-26 21:20:23 | 显示全部楼层
Der (Spitzen)Sport und seine FansIn this chapter we extend the notion of characteristic matrix function, as defined in [.] for unbounded operators, to bounded operators. Classes of Banach space operators are introduced for which the assumptions of Theorem . can easily be verified.
发表于 2025-3-27 04:30:38 | 显示全部楼层
Anliegen und Entwicklung der PhänomenologieIn this chapter we specify further the results of the previous chapter for the case when the Volterra operator .  is an operator of integration. Completeness results will be given for three different cases. The first section has a preliminary character.
发表于 2025-3-27 08:28:21 | 显示全部楼层
发表于 2025-3-27 12:11:12 | 显示全部楼层
Characteristic Matrix Functions for a Class of Operators,In this chapter we extend the notion of characteristic matrix function, as defined in [.] for unbounded operators, to bounded operators. Classes of Banach space operators are introduced for which the assumptions of Theorem . can easily be verified.
发表于 2025-3-27 15:09:47 | 显示全部楼层
Finite Rank Perturbations of Operators of Integration,In this chapter we specify further the results of the previous chapter for the case when the Volterra operator .  is an operator of integration. Completeness results will be given for three different cases. The first section has a preliminary character.
发表于 2025-3-27 20:54:39 | 显示全部楼层
Marinus A. Kaashoek,Sjoerd M. Verduyn LunelA new and self-contained study of linear operators that admit a characteristic matrix function.New completeness theorems for classes of Banach space operators motivated by applications.Comprehensive t
发表于 2025-3-27 22:02:42 | 显示全部楼层
发表于 2025-3-28 05:43:19 | 显示全部楼层
发表于 2025-3-28 06:50:20 | 显示全部楼层
发表于 2025-3-28 11:48:36 | 显示全部楼层
Completeness Theorems and Characteristic Matrix Functions978-3-031-04508-0Series ISSN 0255-0156 Series E-ISSN 2296-4878
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 06:31
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表