找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Compact Convex Sets and Boundary Integrals; Erik M. Alfsen Book 1971 Springer-Verlag Berlin Heidelberg 1971 Boundary.Convexity.Finite.Inte

[复制链接]
查看: 48929|回复: 35
发表于 2025-3-21 18:12:52 | 显示全部楼层 |阅读模式
书目名称Compact Convex Sets and Boundary Integrals
编辑Erik M. Alfsen
视频video
丛书名称Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
图书封面Titlebook: Compact Convex Sets and Boundary Integrals;  Erik M. Alfsen Book 1971 Springer-Verlag Berlin Heidelberg 1971 Boundary.Convexity.Finite.Inte
描述The importance of convexity arguments in functional analysis has long been realized, but a comprehensive theory of infinite-dimensional convex sets has hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech­ nically difficult, these theorems attracted many mathematicians, and the proofs were gradually simplified and fitted into a general theory. The results can no longer be considered very "deep" or difficult, but they certainly remain all the more important. Today Choquet Theory provides a unified approach to integral representations in fields as diverse as potential theory, probability, function algebras, operator theory, group representations and ergodic theory. At the same time the new concepts and results have made it possible, and relevant, to ask new questions within the abstract theory itself. Such questions pertain to the interplay between compact convex sets K and their associated spaces A(K) of continuous affine functions; to the duality between faces of K and appropr
出版日期Book 1971
关键词Boundary; Convexity; Finite; Integral; Integrals; Konvexe Menge; algebra; function; functional analysis; oper
版次1
doihttps://doi.org/10.1007/978-3-642-65009-3
isbn_softcover978-3-642-65011-6
isbn_ebook978-3-642-65009-3
copyrightSpringer-Verlag Berlin Heidelberg 1971
The information of publication is updating

书目名称Compact Convex Sets and Boundary Integrals影响因子(影响力)




书目名称Compact Convex Sets and Boundary Integrals影响因子(影响力)学科排名




书目名称Compact Convex Sets and Boundary Integrals网络公开度




书目名称Compact Convex Sets and Boundary Integrals网络公开度学科排名




书目名称Compact Convex Sets and Boundary Integrals被引频次




书目名称Compact Convex Sets and Boundary Integrals被引频次学科排名




书目名称Compact Convex Sets and Boundary Integrals年度引用




书目名称Compact Convex Sets and Boundary Integrals年度引用学科排名




书目名称Compact Convex Sets and Boundary Integrals读者反馈




书目名称Compact Convex Sets and Boundary Integrals读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:46:30 | 显示全部楼层
Soziale Bewegungen in der Gegenwart,A (partially) ordered vector space . (over ℝ) is said to be . if the negative elements . are the only ones for which {.} has an upper bound. A vector subspace . of ordered vector space is said to be an . if
发表于 2025-3-22 01:10:03 | 显示全部楼层
Representation of Points by Boundary Measures,Throughout this chapter we shall consider an arbitrary, but fixed, locally convex Hausdorff space . over ℝ. If . and .’ are convex subsets of . and . ⊂ .’, then .(.’) shall denote the vector space of all restrictions to . of continuous affine real-valued functions on .’. For simplicity we write . in the place of ., and we note that generally
发表于 2025-3-22 07:36:27 | 显示全部楼层
发表于 2025-3-22 11:37:55 | 显示全部楼层
发表于 2025-3-22 15:58:33 | 显示全部楼层
https://doi.org/10.1007/978-3-642-65009-3Boundary; Convexity; Finite; Integral; Integrals; Konvexe Menge; algebra; function; functional analysis; oper
发表于 2025-3-22 19:02:34 | 显示全部楼层
978-3-642-65011-6Springer-Verlag Berlin Heidelberg 1971
发表于 2025-3-23 00:57:43 | 显示全部楼层
ex sets has hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech­ nically difficult, these
发表于 2025-3-23 05:11:37 | 显示全部楼层
Book 1971s hardly existed for more than a decade. In fact, the integral representation theorems of Choquet and Bishop -de Leeuw together with the uniqueness theorem of Choquet inaugurated a new epoch in infinite-dimensional convexity. Initially considered curious and tech­ nically difficult, these theorems a
发表于 2025-3-23 08:48:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-25 04:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表