找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Commutative Algebras of Toeplitz Operators on the Bergman Space; Nikolai L. Vasilevski Book 2008 Birkhäuser Basel 2008 Bergman space.Compl

[复制链接]
楼主: palliative
发表于 2025-3-25 06:25:53 | 显示全部楼层
Toeplitz Operators on the Unit Disk with Radial Symbols,As follows, for example, from Theorem 2.8.3, the Toeplitz operator with radial defining symbols ., which is continuous at the boundary point 1, has a trivial structure, nothing but a compact perturbation of a scalar operator, .=..
发表于 2025-3-25 07:47:07 | 显示全部楼层
发表于 2025-3-25 13:41:45 | 显示全部楼层
Anatomy of the Algebra Generated by Toeplitz Operators with Piece-wise continuous Symbols,In this chapter we continue the study of the .-algebra generated by Toeplitz operators . with piece-wise continuous defining symbols . acting on the Bergman space (.) on the unit disk .. Our aim here is to describe explicitly each operator from this algebra and to characterize the Toeplitz operators which belong to the algebra.
发表于 2025-3-25 17:18:31 | 显示全部楼层
发表于 2025-3-25 20:56:03 | 显示全部楼层
Prologue,not exceptional in this sense. It will be used systematically in the book and will be supplied with different adjectives clarifying its different meanings: Fredholm symbol, defining symbol, Wick symbol, anti-Wick symbol, etc. That is why we would like to comment first on its meanings and usage.
发表于 2025-3-26 03:02:10 | 显示全部楼层
Commutative Algebras of Toeplitz Operators,he unit disk, considered as the hyperbolic plane. Theorem 10.4.1 shows that the same classes of defining symbols generate commutative .-algebras of Toeplitz operators on . Bergman space. At the same time the principal question, .-., has remained open.
发表于 2025-3-26 05:14:58 | 显示全部楼层
https://doi.org/10.1007/978-3-7643-8726-6Bergman space; Complex analysis; Operator algebra; Operator theory; Toeplitz operator
发表于 2025-3-26 10:48:51 | 显示全部楼层
Birkhäuser Basel 2008
发表于 2025-3-26 15:37:05 | 显示全部楼层
发表于 2025-3-26 17:13:09 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-25 16:01
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表