找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Coherent Analytic Sheaves; Hans Grauert,Reinhold Remmert Book 1984 Springer-Verlag Berlin Heidelberg 1984 Kohärente analytische Garbe.Math

[复制链接]
楼主: GALL
发表于 2025-3-25 04:07:36 | 显示全部楼层
发表于 2025-3-25 08:15:45 | 显示全部楼层
Court Trial and Its Administrationis theorem “Vorbereitungssatz” (cf. Math. Werke 2, p.135), he writes there in a footnote: “Diesen Satz habe ich seit dem Jahre 1860 wiederholt in meinen Universitäts-Vorlesungen vorgetragen.” The Preparation Theorem expresses the fundamental fact that the zero set of a holomorphic function g display
发表于 2025-3-25 12:40:59 | 显示全部楼层
发表于 2025-3-25 16:39:55 | 显示全部楼层
https://doi.org/10.1007/978-981-10-1142-9. in ℂ.,1 ≤ . < ∞, if . is replaced by a nowhere dense analytic set . in . If . has dimension ≤. −2 everywhere it is no longer necessary to assume that . is bounded in DA. These two statements are known as the . Extension Theorems; for the convenience of the reader we reproduce proofs in Section 1.
发表于 2025-3-25 21:14:49 | 显示全部楼层
Power Resources of Legal Sociology Surveys a one-sheeted analytic covering of .. For this reason we first develop a general theory of such coverings and prove a Local Existence Theorem. This theorem easily implies . theorem that the normalization sheaf . of the structure sheaf . is .-coherent.
发表于 2025-3-26 04:06:11 | 显示全部楼层
发表于 2025-3-26 06:51:06 | 显示全部楼层
Legal Personnel in Rural SocietyFor example if . is just a single (reduced) point, coherence of the .-th image sheaf .(.) means that .(.).(.) is a finite dimensional complex vector space. There are many examples of non-compact spaces . where this is not the case.
发表于 2025-3-26 11:05:40 | 显示全部楼层
发表于 2025-3-26 13:57:27 | 显示全部楼层
发表于 2025-3-26 19:07:04 | 显示全部楼层
Extension Theorem and Analytic Coverings,. in ℂ.,1 ≤ . < ∞, if . is replaced by a nowhere dense analytic set . in . If . has dimension ≤. −2 everywhere it is no longer necessary to assume that . is bounded in DA. These two statements are known as the . Extension Theorems; for the convenience of the reader we reproduce proofs in Section 1.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-26 13:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表