找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classification, Clustering, and Data Mining Applications; Proceedings of the M David Banks,Frederick R. McMorris,Wolfgang Gaul Conference p

[复制链接]
查看: 51107|回复: 59
发表于 2025-3-21 18:53:42 | 显示全部楼层 |阅读模式
书目名称Classification, Clustering, and Data Mining Applications
副标题Proceedings of the M
编辑David Banks,Frederick R. McMorris,Wolfgang Gaul
视频video
概述Includes supplementary material:
丛书名称Studies in Classification, Data Analysis, and Knowledge Organization
图书封面Titlebook: Classification, Clustering, and Data Mining Applications; Proceedings of the M David Banks,Frederick R. McMorris,Wolfgang Gaul Conference p
描述Modern data analysis stands at the interface of statistics, computer science, and discrete mathematics. This volume describes new methods in this area, with special emphasis on classification and cluster analysis. Those methods are applied to problems in information retrieval, phylogeny, medical diagnosis, microarrays, and other active research areas.
出版日期Conference proceedings 2004
关键词Cluster analysis; Graph; Projection pursuit; Sim; Vertex; algorithms; clustering; complexity; computer scien
版次1
doihttps://doi.org/10.1007/978-3-642-17103-1
isbn_softcover978-3-540-22014-5
isbn_ebook978-3-642-17103-1Series ISSN 1431-8814 Series E-ISSN 2198-3321
issn_series 1431-8814
copyrightSpringer-Verlag Berlin Heidelberg 2004
The information of publication is updating

书目名称Classification, Clustering, and Data Mining Applications影响因子(影响力)




书目名称Classification, Clustering, and Data Mining Applications影响因子(影响力)学科排名




书目名称Classification, Clustering, and Data Mining Applications网络公开度




书目名称Classification, Clustering, and Data Mining Applications网络公开度学科排名




书目名称Classification, Clustering, and Data Mining Applications被引频次




书目名称Classification, Clustering, and Data Mining Applications被引频次学科排名




书目名称Classification, Clustering, and Data Mining Applications年度引用




书目名称Classification, Clustering, and Data Mining Applications年度引用学科排名




书目名称Classification, Clustering, and Data Mining Applications读者反馈




书目名称Classification, Clustering, and Data Mining Applications读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:52:58 | 显示全部楼层
978-3-540-22014-5Springer-Verlag Berlin Heidelberg 2004
发表于 2025-3-22 02:09:10 | 显示全部楼层
发表于 2025-3-22 04:37:17 | 显示全部楼层
https://doi.org/10.1007/978-981-10-8980-0e representation of each cluster simultaneously. In its adaptive version, at each iteration of these algorithms there is a different distance for the comparison of each cluster with its representation. In this paper, we present a dynamic cluster method based on .. distances for quantitative data.
发表于 2025-3-22 12:10:39 | 显示全部楼层
https://doi.org/10.1007/978-3-030-87710-1sed on calculating the center of gravity. We present in this paper an extension of self-organizing maps to dissimilarity data. This extension allows to apply this algorithm to numerous types of data in a convenient way.
发表于 2025-3-22 15:58:52 | 显示全部楼层
发表于 2025-3-22 19:59:49 | 显示全部楼层
发表于 2025-3-22 23:55:34 | 显示全部楼层
Chinese Culture: The Syntax of the Languagenuous stochastic process. The number of clusters is treated as unknown and the convergence of the clusterwise algorithm is discussed. The approach is compared with other methods via an application to stock-exchange data.
发表于 2025-3-23 03:41:26 | 显示全部楼层
Computer-Mediated Teacher Feedback,Several standardization methods are investigated in conjunction with the .-means algorithm under various conditions. We find that traditional standardization methods (i.e., .-scores) are inferior to alternative standardization methods. Future suggestions concerning the combination of standardization and variable selection are considered.
发表于 2025-3-23 06:41:50 | 显示全部楼层
Computer-Mediated Teacher Feedback,The paper proposes a new method to control the level of separation of components using a single parameter. An illustration for the latent class model (mixture of conditionally independent multinomial distributions) is provided. Further extensions to other finite mixture models are discussed.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-28 18:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表