用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classification Theory of Riemann Surfaces; L. Sario,M. Nakai Book 1970 Springer-Verlag Berlin 1970 Riemannsche Fläche.Surfaces.function.pr

[复制链接]
查看: 44673|回复: 40
发表于 2025-3-21 18:50:57 | 显示全部楼层 |阅读模式
书目名称Classification Theory of Riemann Surfaces
编辑L. Sario,M. Nakai
视频videohttp://file.papertrans.cn/228/227191/227191.mp4
丛书名称Grundlehren der mathematischen Wissenschaften
图书封面Titlebook: Classification Theory of Riemann Surfaces;  L. Sario,M. Nakai Book 1970 Springer-Verlag Berlin 1970 Riemannsche Fläche.Surfaces.function.pr
描述The purpose of the present monograph is to systematically develop a classification theory of Riemann surfaces. Some first steps will also be taken toward a classification of Riemannian spaces. Four phases can be distinguished in the chronological background: the type problem; general classification; compactifications; and extension to higher dimensions. The type problem evolved in the following somewhat overlapping steps: the Riemann mapping theorem, the classical type problem, and the existence of Green‘s functions. The Riemann mapping theorem laid the foundation to classification theory: there are only two conformal equivalence classes of (noncompact) simply connected regions. Over half a century of efforts by leading mathematicians went into giving a rigorous proof of the theorem: RIEMANN, WEIERSTRASS, SCHWARZ, NEUMANN, POINCARE, HILBERT, WEYL, COURANT, OSGOOD, KOEBE, CARATHEODORY, MONTEL. The classical type problem was to determine whether a given simply connected covering surface of the plane is conformally equivalent to the plane or the disko The problem was in the center of interest in the thirties and early forties, with AHLFORS, KAKUTANI, KOBAYASHI, P. MYRBERG, NEVANLINNA,
出版日期Book 1970
关键词Riemannsche Fläche; Surfaces; function; proof; theorem
版次1
doihttps://doi.org/10.1007/978-3-642-48269-4
isbn_softcover978-3-642-48271-7
isbn_ebook978-3-642-48269-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
issn_series 0072-7830
copyrightSpringer-Verlag Berlin 1970
The information of publication is updating

书目名称Classification Theory of Riemann Surfaces影响因子(影响力)




书目名称Classification Theory of Riemann Surfaces影响因子(影响力)学科排名




书目名称Classification Theory of Riemann Surfaces网络公开度




书目名称Classification Theory of Riemann Surfaces网络公开度学科排名




书目名称Classification Theory of Riemann Surfaces被引频次




书目名称Classification Theory of Riemann Surfaces被引频次学科排名




书目名称Classification Theory of Riemann Surfaces年度引用




书目名称Classification Theory of Riemann Surfaces年度引用学科排名




书目名称Classification Theory of Riemann Surfaces读者反馈




书目名称Classification Theory of Riemann Surfaces读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 23:04:17 | 显示全部楼层
发表于 2025-3-22 04:04:00 | 显示全部楼层
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/c/image/227191.jpg
发表于 2025-3-22 05:25:23 | 显示全部楼层
发表于 2025-3-22 08:45:53 | 显示全部楼层
发表于 2025-3-22 13:03:45 | 显示全部楼层
Functions with Logarithmic Singularities,touched on functions with singularities of the form (z — ζ) .. We have also encountered the singularity — log | z — ζ | which arose in the definition of the Green’s function. It is to this logarithmic singularity that we now direct our attention in more detailed study.
发表于 2025-3-22 17:37:21 | 显示全部楼层
发表于 2025-3-23 00:49:23 | 显示全部楼层
https://doi.org/10.1007/978-981-97-1398-1In the preceding chapter we discussed tests for and properties of the class .. We now turn to relations of . to other null classes determined by analytic functions.
发表于 2025-3-23 03:19:52 | 显示全部楼层
发表于 2025-3-23 09:03:34 | 显示全部楼层
Introduction,The purpose of this Introduction is to give to the reader with no previous experience with classification theory some concrete examples of problems and results in the early part of the book. It is not needed for the understanding of the book proper; no proofs, bibliographical references, or rigorous definitions will be given.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-20 07:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表