找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Classification Applications with Deep Learning and Machine Learning Technologies; Laith Abualigah Book 2023 The Editor(s) (if applicable)

[复制链接]
楼主: Consonant
发表于 2025-3-25 07:07:15 | 显示全部楼层
发表于 2025-3-25 09:27:33 | 显示全部楼层
Salak Image Classification Method Based Deep Learning Technique Using Two Transfer Learning Models,vert into jpg format and augmentation. Based on the accuracy result from the model, the best model for the salak classification is ResNet50 which gave an accuracy of 84% followed by VGG16 that gave an accuracy of 77% and CNN which gave 31%.
发表于 2025-3-25 15:02:29 | 显示全部楼层
Image Processing Identification for Sapodilla Using Convolution Neural Network (CNN) and Transfer Lnguish Sapodilla from various images. Furthermore, we utilized different versions of hidden layer and epochs for various outcomes to improve predictive performance. We investigated transfer learning approaches in the classification of Sapodilla in the suggested study. The suggested CNN model improve
发表于 2025-3-25 18:48:43 | 显示全部楼层
发表于 2025-3-25 19:58:46 | 显示全部楼层
发表于 2025-3-26 04:07:13 | 显示全部楼层
Comparative Study on Arabic Text Classification: Challenges and Opportunities, researches, SVM and Naive Bayes were the most widely used classifiers for Arabic text classification, while more effort is needed to develop and to implement flexible Arabic text classification methods and classifiers.
发表于 2025-3-26 04:40:39 | 显示全部楼层
Pedestrian Speed Prediction Using Feed Forward Neural Network,rian speed with a value of 67.72 m/min and 52.19 m/min. The speed distribution also indicate male pedestrian wearing English/short African clothes and cover shoe to have a higher mean speed of 84.21 m/min and 60.10 m/min in ascending descending direction The artificial neural network was satisfactor
发表于 2025-3-26 11:53:27 | 显示全部楼层
发表于 2025-3-26 13:54:26 | 显示全部楼层
发表于 2025-3-26 20:28:45 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-29 04:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表